scholarly journals Self‐regulation of ventromedial prefrontal cortex activation using real‐time fMRI neurofeedback—Influence of default mode network

2019 ◽  
Vol 41 (2) ◽  
pp. 342-352 ◽  
Author(s):  
Ahmad Mayeli ◽  
Masaya Misaki ◽  
Vadim Zotev ◽  
Aki Tsuchiyagaito ◽  
Obada Al Zoubi ◽  
...  
2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S10-S10
Author(s):  
Margaret Niznikiewicz ◽  
Kana Okano ◽  
Clemens Bauer ◽  
Paul Nestor ◽  
Elizabetta Del Re ◽  
...  

Abstract Background Auditory hallucinations (AH) are one of the core symptoms of schizophrenia (SZ) and constitute a significant source of suffering and disability. One third of SZ patients experience pharmacology-resistant AH, so an alternative/complementary treatment strategy is needed to alleviate this debilitating condition. In this study, real-time functional Magnetic Resonance Imaging neurofeedback (rt-fMRI NFB), a non-invasive technique, was used to help 10 SZ patients modulate their brain activity in key brain regions belonging to the network involved in the experience of auditory hallucinations. In two experiments we selected two different brain targets. 1. the superior temporal gyrus (STG) and 2. default mode network (DMN)-central executive network (CEN) connectivity. STG is a key area in the neurophysiology of AH. Hyperactivation of the default mode network (DMN) and of the superior temporal gyrus (STG) in SZ has been shown in imaging studies. Furthermore, several studies point to reduced anticorrelation between the DMN and the central executive network (CEN). Finally, DMN hyperconnectivity has been associated with positive symptoms such as AHs while reduced DMN anticorrelations have been associated with cognitive impairment. Methods In the STG-focused NFB experiment, subjects were trained to upregulate the STG activity while listening to their own voice recording and downregulate it while ignoring a stranger’s voice recording in the course of 21 min NFB session. Visual feedback was provided to subjects at the end of each run from their own STG activity in the form of a thermometer. AH were assessed with auditory hallucination scale pre-NFB and within a week after the NFB session. The DMN-CEN focused NFB experiment was conducted about 1 month later to minimize the carry over effects from the STG-focused NFB and was designed to help SZ patients modulate their DMN and CEN networks. DMN and CEN networks were defined individually for each subject. The goal of the task was to increase CEN-DMN anti-correlations. To achieve that patients were provided with meditation strategies to guide their performance. Feedback was provided in the form of a ball that traveled up if the modulation of DMN-CEN connectivity was successful and traveled down if it was not successful. AH measures were taken before the NFB session and within a week after the session. Results In the STG-focused NFB task, significant STG activation reduction was found in the comparison of pre- relative to post-NFB in the condition of ignoring another person’s voice (p<0.05), FWE-TFCE corrected. AH were also significantly reduced (p<0.01). Importantly, significant correlation was found between reductions in the STG activation and AH reductions (r=.83). In the DMN-CEN focused NFB task, significant increase in the anti-correlations between medial prefrontal cortex (mPFC) and dorsolateral prefrontal cortex (DLPFC) (p<0.05) was observed as well as significant reduction in the mPFC-PCC connectivity (p <0.05), in the pre-post NFB comparisons. AH were significantly reduced in post- relative to pre-NFB comparison (p<0.02). Finally, there was a significant correlation between individual scores in mPFC-STG connectivity and AH reductions. Discussion These the two experiments suggest that targeting both the STG BOLD activation and DMN-CEN connectivity in NFB tasks aimed at AH reduction result both in brain changes and in AH reductions. Together, these results provide strong preliminary support for the NFB use as a means to impact brain function leading to reductions in AH in SZ. Importantly, these results suggest that AH result from brain abnormalities in a network of brain regions and that targeting a brain region belonging to this network will lead to AH symptom reduction.


2018 ◽  
Author(s):  
Stavros Skouras ◽  
Frank Scharnowski

AbstractReal-time neurofeedback enables human subjects to learn to regulate their brain activity, effecting behavioral changes and improvements of psychiatric symptomatology. Neurofeedback up-regulation and down-regulation have been assumed to share common neural correlates. Neuropsychiatric pathology and aging incur suboptimal functioning of the default mode network. Despite the exponential increase in real-time neuroimaging studies, the effects of aging, pathology and the direction of regulation on neurofeedback performance remain largely unknown. Using open-access analyses and real-time fMRI data shared through the Rockland Sample Real-Time Neurofeedback project (N=136), we first modeled neurofeedback performance and learning in a group of subjects with psychiatric history (na=74) and a healthy control group (nb=62). Subsequently, we examined the relationship between up-regulation and down-regulation learning, the relationship between age and neurofeedback performance in each group and differences in neurofeedback performance between the two groups. Results show that in an initial session of default mode network neurofeedback with real-time fMRI, up-regulation and down-regulation learning scores are negatively correlated. Moreover, age correlates negatively with default mode network neurofeedback performance, only in absence of psychiatric history. Finally, adults with psychiatric history outperform healthy controls in default mode network up-regulation. Interestingly, the performance difference is related to no up-regulation learning in controls.


2018 ◽  
Author(s):  
Alizée LOPEZ-PERSEM ◽  
Lennart Verhagen ◽  
Céline Amiez ◽  
Michael Petrides ◽  
Jérome Sallet

ABSTRACTThe ventromedial prefrontal cortex (vmPFC), which comprises several distinct cytoarchitectonic areas, is a key brain region supporting decision-making processes and it has been shown to be one of the main hubs of the Default Mode Network, a network classically activated during resting state. We here examined the inter-individual variability in the vmPFC sulcal morphology in 57 humans (37 females) and demonstrated that the presence/absence of the inferior rostral sulcus and the subgenual intralimbic sulcus influences significantly the sulcal organization of this region. Furthermore, the sulcal organization influences the location of the vmPFC peak of the Default Mode Network, demonstrating that the location of functional activity can be affected by local sulcal patterns. These results are critical for the investigation of the function of the vmPFC and show that taking into account the sulcal variability might be essential to guide the interpretation of neuroimaging studies.SIGNIFICANCE STATEMENTThe ventromedial prefrontal cortex (vmPFC) is one of the main hubs of the Default Mode Network and plays a central role in value coding and decision-making. The present study provides a complete description of the inter-individual variability of anatomical morphology of this large portion of prefrontal cortex and its relation to functional organization. We have shown that two supplementary medial sulci predominantly determine the organization of the vmPFC, which in turn affect the location of the functional peak of activity in this region. Those results show that taking into account the variability in sulcal patterns might be essential to guide the interpretation of neuroimaging studies of the human brain and of the vmPFC in particular.


2014 ◽  
Vol 32 (2) ◽  
pp. 102-108 ◽  
Author(s):  
Ji Li ◽  
Jun-Hai Zhang ◽  
Tao Yi ◽  
Wei-Jun Tang ◽  
Song-Wei Wang ◽  
...  

Background Acupuncture is gaining in popularity as a treatment for chronic low back pain (cLBP); however, its therapeutic mechanisms remain controversial, partly because of the absence of an objective way of measuring subjective pain. Resting-state functional MRI (rsfMRI) has demonstrated aberrant default mode network (DMN) connectivity in patients with chronic pain, and also shown that acupuncture increases DMN connectivity in pain-modulator and affective-emotional brain regions of healthy subjects. Objective This study sought to explore how cLBP influences the DMN and whether, and how, the altered DMN connectivity is reversed after acupuncture for clinical pain. Methods RsfMRI data from 20 patients with cLBP, before and after 4 weeks of treatment, and 10 age- and gender-matched healthy controls (without treatment) were analysed using independent components analyses to determine connectivity within the DMN, and combined with correlation analyses to compute covariance between changes in DMN connectivity and changes in clinical pain. Visual analogue scale data were assessed to rate clinical pain levels. Results Less connectivity within the DMN was found in patients with cLBP than in healthy controls, mainly in the dorsolateral prefrontal cortex, medial prefrontal cortex, anterior cingulate gyrus and precuneus. After acupuncture, patients’ connectivities were restored almost to the levels seen in healthy controls. Furthermore, reductions in clinical pain were correlated with increases in DMN connectivity. Conclusions This result suggests that modulation of the DMN by acupuncture is related to its therapeutic effects on cLBP. Imaging of the DMN provides an objective method for assessment of the effects of acupuncture-induced analgesia.


2013 ◽  
Vol 109 (5) ◽  
pp. 1250-1258 ◽  
Author(s):  
Oliver Hinds ◽  
Todd W. Thompson ◽  
Satrajit Ghosh ◽  
Julie J. Yoo ◽  
Susan Whitfield-Gabrieli ◽  
...  

We used real-time functional magnetic resonance imaging (fMRI) to determine which regions of the human brain have a role in vigilance as measured by reaction time (RT) to variably timed stimuli. We first identified brain regions where activation before stimulus presentation predicted RT. Slower RT was preceded by greater activation in the default-mode network, including lateral parietal, precuneus, and medial prefrontal cortices; faster RT was preceded by greater activation in the supplementary motor area (SMA). We examined the roles of these brain regions in vigilance by triggering trials based on brain states defined by blood oxygenation level-dependent activation measured using real-time fMRI. When activation of relevant neural systems indicated either a good brain state (increased activation of SMA) or a bad brain state (increased activation of lateral parietal cortex and precuneus) for performance, a target was presented and RT was measured. RTs on trials triggered by a good brain state were significantly faster than RTs on trials triggered by a bad brain state. Thus human performance was controlled by monitoring brain states that indicated high or low vigilance. These findings identify neural systems that have a role in vigilance and provide direct evidence that the default-mode network has a role in human performance. The ability to control and enhance human behavior based on brain state may have broad implications.


2021 ◽  
Vol 15 ◽  
Author(s):  
Linlin Yu ◽  
Quanshan Long ◽  
Yancheng Tang ◽  
Shouhang Yin ◽  
Zijun Chen ◽  
...  

We investigated if emotion regulation can be improved through self-regulation training on non-emotional brain regions, as well as how to change the brain networks implicated in this process. During the training period, the participants were instructed to up-regulate their right dorsolateral prefrontal cortex (rDLPFC) activity according to real-time functional near-infrared spectroscopy (fNIRS) neurofeedback signals, and there was no emotional element. The results showed that the training significantly increased emotion regulation, resting-state functional connectivity (rsFC) within the emotion regulation network (ERN) and frontoparietal network (FPN), and rsFC between the ERN and amygdala; however, training did not influence the rsFC between the FPN and the amygdala. However, self-regulation training on rDLPFC significantly improved emotion regulation and generally increased the rsFCs within the networks; the rsFC between the ERN and amygdala was also selectively increased. The present study also described a safe approach that may improve emotion regulation through self-regulation training on non-emotional brain regions.


Sign in / Sign up

Export Citation Format

Share Document