scholarly journals Chiral Aggregates of Triphenylamine‐Based Dyes for Depleting the Production of Hydrogen Peroxide in the Photochemical Water‐Splitting Process

2019 ◽  
Vol 102 (5) ◽  
pp. e1900065 ◽  
Author(s):  
Beatrice Adelizzi ◽  
Andreas T. Rösch ◽  
Daan J. van Rijen ◽  
R. Simone Martire ◽  
Serkan Esiner ◽  
...  
Energy ◽  
2017 ◽  
Vol 118 ◽  
pp. 1234-1242 ◽  
Author(s):  
Heba M. Gobara ◽  
Ibrahim M. Nassar ◽  
Ahmed M.A. El Naggar ◽  
Gh. Eshaq

2018 ◽  
Vol 43 (37) ◽  
pp. 17574-17587 ◽  
Author(s):  
Vishnu Kumar Budama ◽  
Nathan G. Johnson ◽  
Anthony McDaniel ◽  
Ivan Ermanoski ◽  
Ellen B. Stechel

Author(s):  
Mark D. Allendorf ◽  
Richard B. Diver ◽  
James E. Miller ◽  
Nathan P. Siegel

A thermodynamic analysis of the two-step water splitting process for the production of hydrogen is reported in this paper. Calculations simulating the preparation of ferrite samples, their thermal reduction to form a mixture of metal oxides, and subsequent reoxidation with steam to produce hydrogen were performed. Mixed-metal spinel ferrites of the general form MFe2O4, where M = Co, Ni, or Zn, are compared with iron spinel, Fe3O4. The results indicate that of the four ferrites examined, nickel spinel has the most favorable combination of properties for use in two-step water splitting.


2020 ◽  
Vol 63 (9-10) ◽  
pp. 895-912
Author(s):  
Haiyan Song ◽  
Lishan Wei ◽  
Luning Chen ◽  
Han Zhang ◽  
Ji Su

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Shan Wang ◽  
Aolin Lu ◽  
Chuan-Jian Zhong

AbstractAs a promising substitute for fossil fuels, hydrogen has emerged as a clean and renewable energy. A key challenge is the efficient production of hydrogen to meet the commercial-scale demand of hydrogen. Water splitting electrolysis is a promising pathway to achieve the efficient hydrogen production in terms of energy conversion and storage in which catalysis or electrocatalysis plays a critical role. The development of active, stable, and low-cost catalysts or electrocatalysts is an essential prerequisite for achieving the desired electrocatalytic hydrogen production from water splitting for practical use, which constitutes the central focus of this review. It will start with an introduction of the water splitting performance evaluation of various electrocatalysts in terms of activity, stability, and efficiency. This will be followed by outlining current knowledge on the two half-cell reactions, hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), in terms of reaction mechanisms in alkaline and acidic media. Recent advances in the design and preparation of nanostructured noble-metal and non-noble metal-based electrocatalysts will be discussed. New strategies and insights in exploring the synergistic structure, morphology, composition, and active sites of the nanostructured electrocatalysts for increasing the electrocatalytic activity and stability in HER and OER will be highlighted. Finally, future challenges and perspectives in the design of active and robust electrocatalysts for HER and OER towards efficient production of hydrogen from water splitting electrolysis will also be outlined.


Author(s):  
Yihuang Xiong ◽  
Quinn Campbell ◽  
Julian Fanghanel ◽  
Cathy Badding ◽  
Huaiyu Wang ◽  
...  

The production of hydrogen fuels, via water splitting, is of practical relevance for meeting global energy needs and mitigating the environmental consequences of fossil-fuel-based transportation. Water photoelectrolysis has been proposed...


Author(s):  
Di Li ◽  
Yingying Xing ◽  
Changjian Zhou ◽  
Yikai Lu ◽  
Shengjie Xu ◽  
...  

The high reaction energy barrier of the oxygen evolution reaction (OER) extremely reduces the efficiency of water splitting, which is not conducive to large-scale production of hydrogen. Due to the...


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Nur Aimi Jani ◽  
Choonyian Haw ◽  
Weesiong Chiu ◽  
Saadah Abdul Rahman ◽  
Poisim Khiew ◽  
...  

Current work reports the study of Ag nanocrystals (NCs) decorated doubly anodized (DA) TiO2 nanotubes (NTs) thin film as an efficient photoelectrode material for water splitting and photocatalytic hydrogen gas production. DA process has been shown to be capable of producing less defective NTs and creating additional spacious gaps in between NT bundles to allow efficient and uniform integration of Ag NCs. By employing photoreduction method, Ag NCs can be deposited directly onto NTs, where the size and density of coverage can be maneuvered by merely varying the concentration of Ag precursors. Field emission scanning electron microscope (FESEM) images show that the Ag NCs with controllable size are homogeneously decorated onto the walls of NTs with random yet uniform distribution. X-ray diffraction (XRD) results confirm the formation of anatase TiO2 NTs and Ag NCs, which can be well indexed to standard patterns. The decoration of metallic Ag NCs onto the surface of NTs demonstrates a significant enhancement in the photoconversion efficiency as compared to that of pristine TiO2 NTs. Additionally, the as-prepared nanocomposite film also shows improved efficiency when used as a photocatalyst platform in the production of hydrogen gas. Such improvement in the performance of water splitting and photocatalytic hydrogen gas production activity can be credited to the surface plasmonic resonance of Ag NCs present on the surface of the NTs, which renders improved light absorption and better charge separation. The current work can serve as a model of study for designing more advanced nanoarchitecture photoelectrode for renewable energy application.


iScience ◽  
2021 ◽  
Vol 24 (2) ◽  
pp. 102094
Author(s):  
Rusen Zou ◽  
Aliyeh Hasanzadeh ◽  
Alireza Khataee ◽  
Xiaoyong Yang ◽  
Mingyi Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document