Natural haplotypes in the regulatory sequences affect human alcohol dehydrogenase 1C ( ADH1C ) gene expression

2005 ◽  
Vol 25 (2) ◽  
pp. 150-155 ◽  
Author(s):  
Hui‐Ju Chen ◽  
Huijun Tian ◽  
Howard J. Edenberg
1995 ◽  
Vol 73 (S1) ◽  
pp. 876-884 ◽  
Author(s):  
William E. Hintz ◽  
Inge Kalsner ◽  
Ewa Plawinski ◽  
Zimin Guo ◽  
Peter A. Lagosky

A variety of gene expression systems have been developed that utilize the promoter and transcriptional regulatory sequences derived from carbon-catabolite repressed genes for the expression of heterologous genes. The alcA expression system of Aspergillus nidulans utilizes the promoter and regulatory sequences derived from the alcohol dehydrogenase I (alcA) gene. Expression of the alcA gene is repressed by a DNA-binding protein (CreA) in the presence of glucose and induced by ethanol under glucose-depleted conditions. One problem encountered during the expression of therapeutic proteins in A. nidulans is the coexpression of secreted proteases at the time of maximal secretion of heterologous product. To avoid the proteases we created an alcA promoter variant that is no longer sensitive to glucose repression hence could drive expression at earlier time points during the fermentation. The use of this promoter variant in the expression of recombinant interleukin-6 is discussed. A second problem encountered during the expression of high-quality human therapeutic proteins in Aspergillus is aberrant glycosylation. Lower eukaryotic systems, such as Aspergillus, tend to add highly branched mannosidic chains to heterologous secreted protein products. N-Glycans can be important for both the structure and function of specific glycoproteins, hence efforts are being made to in vivo alter the type and complexity of N-glycans substituted by A. nidulans. Key words: Aspergillus, gene expression, alcohol dehydrogenase, glycosylation.


1991 ◽  
Vol 11 (1) ◽  
pp. 47-54
Author(s):  
H Chan ◽  
S Hartung ◽  
M Breindl

We have studied the role of DNA methylation in repression of the murine alpha 1 type I collagen (COL1A1) gene in Mov13 fibroblasts. In Mov13 mice, a retroviral provirus has inserted into the first intron of the COL1A1 gene and blocks its expression at the level of transcriptional initiation. We found that regulatory sequences in the COL1A1 promoter region that are involved in the tissue-specific regulation of the gene are unmethylated in collagen-expressing wild-type fibroblasts and methylated in Mov13 fibroblasts, confirming and extending earlier observations. To directly assess the role of DNA methylation in the repression of COL1A1 gene transcription, we treated Mov13 fibroblasts with the demethylating agent 5-azacytidine. This treatment resulted in a demethylation of the COL1A1 regulatory sequences but failed to activate transcription of the COL1A1 gene. Moreover, the 5-azacytidine treatment induced a transcription-competent chromatin structure in the retroviral sequences but not in the COL1A1 promoter. In DNA transfection and microinjection experiments, we found that the provirus interfered with transcriptional activity of the COL1A1 promoter in Mov13 fibroblasts but not in Xenopus laevis oocytes. In contrast, the wild-type COL1A1 promoter was transcriptionally active in Mov13 fibroblasts. These experiments showed that the COL1A1 promoter is potentially transcriptionally active in the presence of proviral sequences and that Mov13 fibroblasts contain the trans-acting factors required for efficient COL1A1 gene expression. Our results indicate that the provirus insertion in Mov13 can inactivate COL1A1 gene expression at several levels. It prevents the developmentally regulated establishment of a transcription-competent methylation pattern and chromatin structure of the COL1A1 domain and, in the absence of DNA methylation, appears to suppress the COL1A1 promoter in a cell-specific manner, presumably by assuming a dominant chromatin structure that may be incompatible with transcriptional activity of flanking cellular sequences.


1986 ◽  
Vol 6 (2) ◽  
pp. 703-706
Author(s):  
F Toneguzzo ◽  
A C Hayday ◽  
A Keating

The technique of DNA transfer by electroporation was investigated in an effort to evaluate its utility for the identification of developmentally controlled regulatory sequences. Transient and stable gene expression was detected in a variety of lymphoid cell lines subjected to electroporation. No correlation existed between the levels of chloramphenicol acetyltransferase (acetyl-CoA; chloramphenicol 3-O-acetyltransferase, EC 2.3.1.28) expression and stable transfection frequency. In all lymphoid cell lines tested, the simian virus 40 early region was a better promoter than was the Rous sarcoma virus long terminal repeat.


1986 ◽  
Vol 6 (10) ◽  
pp. 3368-3372 ◽  
Author(s):  
L J Rowland ◽  
J N Strommer

Among the adaptations to stress exhibited by plants is the anaerobic response of roots, induced by submerging roots in water. The response consists of a programmed change in gene expression: proteins produced under aerobic conditions are no longer synthesized but are replaced by approximately 20 so-called anaerobic peptides (M. M. Sachs, M. Freeling, and R. Okimoto, Cell 20:761-767, 1980). The gene for maize alcohol dehydrogenase I (Adh1) is expressed at high levels under such conditions. We report here that changes in alcohol dehydrogenase I RNA levels in anaerobic roots are associated with changes in both transcription rate and transcript stability.


2019 ◽  
Author(s):  
Tal Einav ◽  
Rob Phillips

AbstractAlthough the key promoter elements necessary to drive transcription inEscherichia colihave long been understood, we still cannot predict the behavior of arbitrary novel promoters, hampering our ability to characterize the myriad of sequenced regulatory architectures as well as to design novel synthetic circuits. This work builds on a beautiful recent experiment by Urtechoet al.who measured the gene expression of over 10,000 promoters spanning all possible combinations of a small set of regulatory elements. Using this data, we demonstrate that a central claim in energy matrix models of gene expression – that each promoter element contributes independently and additively to gene expression – contradicts experimental measurements. We propose that a key missing ingredient from such models is the avidity between the -35 and -10 RNA polymerase binding sites and develop what we call arefined energy matrixmodel that incorporates this effect. We show that this the refined energy matrix model can characterize the full suite of gene expression data and explore several applications of this framework, namely, how multivalent binding at the -35 and -10 sites can buffer RNAP kinetics against mutations and how promoters that bind overly tightly to RNA polymerase can inhibit gene expression. The success of our approach suggests that avidity represents a key physical principle governing the interaction of RNA polymerase to its promoter.Significance StatementCellular behavior is ultimately governed by the genetic program encoded in its DNA and through the arsenal of molecular machines that actively transcribe its genes, yet we lack the ability to predict how an arbitrary DNA sequence will perform. To that end, we analyze the performance of over 10,000 regulatory sequences and develop a model that can predict the behavior of any sequence based on its composition. By considering promoters that only vary by one or two elements, we can characterize how different components interact, providing fundamental insights into the mechanisms of transcription.


2019 ◽  
Author(s):  
Joanna Mitchelmore ◽  
Nastasiya Grinberg ◽  
Chris Wallace ◽  
Mikhail Spivakov

AbstractIdentifying DNA cis-regulatory modules (CRMs) that control the expression of specific genes is crucial for deciphering the logic of transcriptional control. Natural genetic variation can point to the possible gene regulatory function of specific sequences through their allelic associations with gene expression. However, comprehensive identification of causal regulatory sequences in brute-force association testing without incorporating prior knowledge is challenging due to limited statistical power and effects of linkage disequilibrium. Sequence variants affecting transcription factor (TF) binding at CRMs have a strong potential to influence gene regulatory function, which provides a motivation for prioritising such variants in association testing. Here, we generate an atlas of CRMs showing predicted allelic variation in TF binding affinity in human lymphoblastoid cell lines (LCLs) and test their association with the expression of their putative target genes inferred from Promoter Capture Hi-C and immediate linear proximity. We reveal over 1300 CRM TF-binding variants associated with target gene expression, the majority of them undetected with standard association testing. A large proportion of CRMs showing associations with the expression of genes they contact in 3D localise to the promoter regions of other genes, supporting the notion of ‘epromoters’: dual-action CRMs with promoter and distal enhancer activity.


1990 ◽  
Vol 259 (4) ◽  
pp. L185-L197
Author(s):  
B. R. Stripp ◽  
J. A. Whitsett ◽  
D. L. Lattier

Gene transcription is regulated by the formation of protein-DNA complexes that influence the rate of specific initiation of transcription by RNA polymerase. Recent experimental advances allowing the identification of cis regulatory sequences that specify the binding of trans acting protein factors have made significant contributions to our understanding of the mechanistic complexities of transcriptional regulation. These methodologies have prompted the use of similar strategies to elucidate transcriptional control mechanisms involved in the tissue specific and developmental regulation of pulmonary surfactant protein gene expression. The purpose of this review is to describe various methodologies by which molecular biologists identify and subsequently assay regions of nucleic acids presumed to be integral in gene regulation at the level of transcription. It is well established that genes encoding surfactant proteins are subject to regulation by hormones, cytokines, and a variety of biologically active reagents. Perhaps future studies utilizing molecular tools outlined in this review will be valuable in identification of DNA sequences and protein factors required for the regulation of lung surfactant genes.


Sign in / Sign up

Export Citation Format

Share Document