scholarly journals Text-mined phenotype annotation and vector-based similarity to improve identification of similar phenotypes and causative genes in monogenic disease patients

2018 ◽  
Vol 39 (5) ◽  
pp. 643-652 ◽  
Author(s):  
Jake R. Saklatvala ◽  
Nick Dand ◽  
Michael A. Simpson
2011 ◽  
Vol 13 (4) ◽  
pp. 215-221 ◽  
Author(s):  
Antonio Valeri ◽  
Sandra Martínez ◽  
José A. Casado ◽  
Juan A. Bueren

2013 ◽  
Vol 9 (5) ◽  
pp. e1003073 ◽  
Author(s):  
Wei-Hua Chen ◽  
Xing-Ming Zhao ◽  
Vera van Noort ◽  
Peer Bork

Author(s):  
Raffaele Falsaperla ◽  
Valentina Giacchi ◽  
Maria Giovanna Aguglia ◽  
Janette Mailo ◽  
Maria Grazia Longo ◽  
...  

AbstractCongenital heart disease (CHD), the most common major congenital anomaly, is associated with a genetic syndrome (chromosomal anomalies, genomic disorders, or monogenic disease) in 30% of patients. The aim of this systematic review is to evaluate if, in the neonatal setting, clinical clues that orient the diagnostic path can be identified. For this purpose, we revised the most frequent dysmorphic features described in newborns with CHD, comparing those associated with monogenic syndromes (MSG) with the ones reported in newborns with genomic disorders. For this systematic review according to PRISMA statement, we used PubMed, Medline, Google Scholar, Scopus database, and search terms related to CHD and syndrome. We found a wide range of dysmorphisms (ocular region, ears, mouth, and/or palate and phalangeal anomalies) detected in more than half of MSGs were found to be associated with CHDs, but those anomalies are also described in genomic rearrangements syndromes with equal prevalence. These findings confirm that etiological diagnosis in newborns is challenging, and only the prompt and expert recognition of features suggestive of genetic conditions can improve the selection of appropriate, cost-effective diagnostic tests. However, in general practice, it is crucial to recognize clues that can suggest the presence of a genetic syndrome, and neonatologists often have the unique opportunity to be the first to identify abnormalities in the neonate.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Matthew Wheeler ◽  
Daryl Waggott ◽  
Megan Grove ◽  
Frederick Dewey ◽  
Cuiping Pan ◽  
...  

Background: Technological advances have greatly reduced the cost of whole genome sequencing. For single individuals clinical application is apparent, while exome sequencing in tens of thousands of people has allowed a more global view of genetic variation that can inform interpretation of specific variants in individuals. We hypothesized that genome sequencing of patients with monogenic cardiomyopathy would facilitate discovery of genetic modifiers of phenotype. Methods and Results: We identified 48 individuals diagnosed with cardiomyopathy and with putative mutations in MYH7, the gene encoding beta myosin heavy chain. We carried out whole genome sequencing and applied a newly developed analytical pipeline optimized for discovery of genes modifying severity of clinical presentation and outcomes. Using a combination of external priors and rare variant burden tests we scored genes as potential modifiers. There were 96 genes that reached a modifier score of 6 out of 12 or better (9=2, 8=8, 7=17, 6=69). We identified NCKAP1, a gene that regulates actin filament dynamics, and CAMSAP1, a calmodulin regulate gene that regulates microtubule dynamics, as top scoring modifiers of hypertrophic cardiomyopathy phenotypes (score=9) while LDB2, RYR2, FBN1 and ATP1A2 had modifier scores of 8. Of the top scoring genes, 21 out of 96 were identified as candidates a priori. Our candidate prioritization scheme identified the previously described modifiers of cardiomyopathy phenotype, FHOD3 and MYBPC3, as top scoring genes. We identified structural variants in 21 clinically sequenced cardiomyopathy associated genes, 13 of which were at less than 10% frequency. Copy number variants in ILK and CSRP3 were nominally associated with ejection fraction (p=0.03), while 8 genes showed copy gains (GLA, FKTN, SGCD, TTN, SOS1, ANKRD1, VCL and NEBL). Structural variants were found in CSRP3, MYL3 and TNNC1, all of which have been implicated as causative for HCM. Conclusion: Evaluation of the whole genome sequence, even in the case of putatively monogenic disease, leads to important diagnostic and scientific insights not revealed by panel-based sequencing.


2011 ◽  
Vol 2011 ◽  
pp. 1-18 ◽  
Author(s):  
Olivier M. Vanakker ◽  
Dimitri Hemelsoet ◽  
Anne De Paepe

Though the genetic background of ischaemic and haemorrhagic stroke is often polygenetic or multifactorial, it can in some cases result from a monogenic disease, particularly in young adults. Besides arteriopathies and metabolic disorders, several connective tissue diseases can present with stroke. While some of these diseases have been recognized for decades as causes of stroke, such as the vascular Ehlers-Danlos syndrome, others only recently came to attention as being involved in stroke pathogenesis, such as those related to Type IV collagen. This paper discusses each of these connective tissue disorders and their relation with stroke briefly, emphasizing the main clinical features which can lead to their diagnosis.


Blood ◽  
2002 ◽  
Vol 100 (13) ◽  
pp. 4303-4309 ◽  
Author(s):  
James G. Taylor VI ◽  
Delia C. Tang ◽  
Sharon A. Savage ◽  
Susan F. Leitman ◽  
Seth I. Heller ◽  
...  

Stroke is a major cause of morbidity and mortality in sickle cell (SS) disease. Genetic risk factors have been postulated to contribute to this clinical outcome. The human genome project has substantially increased the catalog of variations in genes, many of which could modify the risk for manifestations of disease outcome in a monogenic disease, namely SS. VCAM1 is a cell adhesion molecule postulated to play a critical role in the pathogenesis of SS disease. We identified a total of 33 single nucleotide polymorphisms (SNPs) by sequencing the entire coding region, 2134 bp upstream of the 5′ end of the published cDNA, 217 bp downstream of the 3′ end of the cDNA, and selected intronic regions of the VCAM1 locus. Allelic frequencies for selected SNPs were determined in a healthy population. We subsequently analyzed 4 nonsynonymous coding, 2 synonymous coding, and 4 common promoter SNPs in a genetic association study of clinically apparent stroke in SS disease conducted in a cohort derived from a single institution in Jamaica (51 symptomatic cases and 51 matched controls). Of the 10 candidate SNPs analyzed in this pilot study, the variant allele of the nonsynonymous SNP, VCAM1 G1238C, may be associated with protection from stroke (odds ratio [OR] 0.35, 95% confidence interval [CI] 0.15-0.83, P = .04). Further study is required to confirm the importance of this variant inVCAM1 as a clinically useful modifier of outcome in SS disease.


2019 ◽  
Vol 26 (1) ◽  
pp. 175-186
Author(s):  
Vitalii K. Zafiraki ◽  
Alim M. Namitokov ◽  
Elena D. Kosmacheva

Familial hypercholesterolemia (FHC) is a common monogenic disease that occurs with a frequency of ~1:250 and is characterised by a high content of low-density lipoprotein (LDL) in the blood. This disease leads to the early development of atherosclerotic cardiovascular diseases (ACVD). Although the screening and diagnostics issues concerned with FHC are well developed and the modern lipid-lowering therapy can significantly improve the prognosis, the detectability of this disease remains extremely low. In recent years, the concept of FHC has undergone significant changes under the influence of large epidemiological studies, including verification of the FHC diagnosis using genetic tests. The article is aimed at discussing the clinical manifestations of FHC, as well as modern medical and extracorporal approaches to its treatment.Conclusion.Until the advent of modern lipid-lowering drugs, FHC had remained to be a disease with a poor prognosis due to early ACVD and the associated premature death. Today, the diseases is amenable to successful treatment, which, though not eliminating the genetic defect, allows almost the same life duration as in the general population to be achieved. However, all the possibilities of modern approaches to the treatment of this serious disease can be realized provided that a state-level screening program for such patients has been implemented.Conflict of interest: the authors declare no conflict of interest.


2021 ◽  
pp. 1-11
Author(s):  
Montse Pauta ◽  
Berta Campos ◽  
Maria Segura-Puimedon ◽  
Gemma Arca ◽  
Alfons Nadal ◽  
...  

<b><i>Objective:</i></b> The aim of the study was to assess the diagnostic yield of 2 different next-generation sequencing (NGS) approaches: gene panel and “solo” clinical exome sequencing (solo-CES), in fetuses with structural anomalies and normal chromosomal microarray analysis (CMA), in the absence of a known familial mutation. <b><i>Methodology:</i></b> Gene panels encompassing from 2 to 140 genes, were applied mainly in persistent nuchal fold/fetal hydrops and in large hyperechogenic kidneys. Solo-CES, which entails sequencing the fetus alone and only interpreting the Online Mendelian Inheritance in Man genes, was performed in multisystem or recurrent structural anomalies. <b><i>Results:</i></b> During the study period (2015–2020), 153 NGS studies were performed in 148 structurally abnormal fetuses with a normal CMA. The overall diagnostic yield accounted for 35% (53/153) of samples and 36% (53/148) of the fetuses. Diagnostic yield with the gene panels was 31% (15/49), similar to 37% (38/104) in solo-CES. <b><i>Conclusions:</i></b> A monogenic disease was established as the underlying cause in 35% of selected fetal structural anomalies by gene panels and solo-CES.


Sign in / Sign up

Export Citation Format

Share Document