Temporal variation of soil erosion resistance on sloping farmland during the growth stages of maize ( Z. mays L.)

2021 ◽  
Author(s):  
Rui Ma ◽  
Zicheng Zheng ◽  
Tingxuan Li ◽  
Shuqin He ◽  
Xizhou Zhang ◽  
...  
Author(s):  
Shouqin Zhong ◽  
Zhen Han ◽  
Jiangwen Li ◽  
Deti Xie ◽  
Qingyuan Yang ◽  
...  

High-intensity utilization of sloping farmland causes serious soil erosion and agricultural non-point source pollution (AGNSP) in the Three Gorges Reservoir Area (TGRA). Crop-mulberry systems are important agroforestry systems for controlling soil, water, and nutrient losses. However, there are many different mulberry hedgerow planting patterns in the TGRA. In this study, soil structure, nutrient buildup, and runoff nutrient loss were observed in field runoff plots with five configurations: P1 (two longitudinal mulberry hedgerows), P2 (two mulberry contour hedgerows), P3 (three mulberry contour hedgerows), P4 (mulberry hedgerow border), and P5 (mulberry hedgerow border and one mulberry contour hedgerow), as well as a control (CT; no mulberry hedgerows). P1 had the smallest percentage of aggregate destruction (18.8%) and largest mean weight diameter (4.48 mm). P5 led to the greatest accumulation of ammonium nitrogen (NH4+–N) and total phosphorus (TP) (13.4 kg ha−1 and 1444.5 kg ha−1 on average, respectively), while P4 led to the greatest accumulation of available phosphorus (AP), nitrate nitrogen (NO3−–N), and total nitrogen (TN) (114.0, 14.9, and 1694.1 kg ha−1, respectively). P5 was best at preventing soil erosion, with the smallest average annual runoff and sediment loss of 112.2 m3 ha−1 and 0.06 t ha−1, respectively, which were over 72.4% and 87.4% lower than those in CT, respectively. P5 and P4 intercepted the most N in runoff, with average NH4+–N, NO3−–N, particulate N, and TN losses of approximately 0.09, 0.07, 0.41, and 0.58 kg ha−1, respectively, which were 49.7%, 76.2%, 71.3%, and 69.9% lower than those in CT, respectively. P5 intercepted the most P in runoff, with average TP and total dissolved phosphorus (TDP) losses of 0.09 and 0.04 kg ha−1, respectively, which were 77.5% and 70.4% lower than those in CT, respectively. Therefore, the pattern with one mulberry hedgerow border and one mulberry contour hedgerow (P5) best controlled AGNSP, followed by that with only a mulberry hedgerow border (P4).


2013 ◽  
Vol 838-841 ◽  
pp. 675-679 ◽  
Author(s):  
Miao Zhang ◽  
Fang Qing Chen ◽  
Jin Xia Zhang

Cynodon dactylon has become a dominant riparian species in the reservoir region after the Three Gorges project was finished. In order to determine the effect of the species in soil conservation and slope reinforcement and the variation over time, the soil erosion resistance and shear strength of plants soil-root systems were tested during different seasons in a year through control experiment. Results showed that C. dactylon roots enhanced significantly soil conservation and slope reinforcement. The tensile strength of C. dactylon roots reached from 65.34 to 91.22Kpa/mm2 after three to twelve month growth, so did the soil erosion resistance coefficient from 0.34 to 0.86, shear strength from 20.82 to 25.98Kpa increasing by 39.62%, 154.90% and 24.74% respectively. We conclude that the temporal dynamics of C. dactylon roots influenced the performance of soil-root system in soil conservation and slope reinforcement.


2020 ◽  
Author(s):  
Hai Xiao

<p>The operation of the Three Gorges Reservoir (TGR) altered the distribution of the soil properties, the plant community composition and biomass in the water-level fluctuation zone (WLFZ). However, the vertical variation of soil erosion resistance in the WLFZ of the TGR is still unclear and need to be further evaluated. The objectives of this study were to assess the vertical variation of soil resistance to rill erosion in the WLFZ of the TGR and to identify the factors influencing these variations. Soil samples from 150-155 m, 155-160 m, 160-165 m, 165-170 m and 170-175 m were taken along a slope profile at the same time from the WLFZ of the TGR area. All the samples subjected to scour under the combinations of five slope gradients (8.74%, 17.63%, 26.79%, 36.40% and 46.63%) and five flow rates (5, 10, 15, 20 and 25 L min<sup>–1</sup>) by using a slope-adjustable steel hydraulic flume (4 m length, 0.4 m width, 0.2 m depth). The results showed that soil properties and biomass parameters were affected by the elevations of the WLFZ. The average soil detachment capacity fluctuated with the increase of elevation, maximum and minimum value of  which were located at the 165-170 m and 155-160 m, respectively. The soil detachment capacity was significantly negatively correlated with MWD (P<0.05), but not positively correlated with other properties (P>0.05).  The rill erodibility also fluctuated with the increase of elevation. Correlation analysis showed that rill erodibility corresponding to runoff shear stress and stream power respectively had significantly negative correlation with MWD (P<0.05), and rill erodibility corresponding to unit energy of water-carrying section had significant negative correlation with MWD (P<0.01). Therefore, the soil aggregate stability was the major factor responsible for the vertical variation in soil erosion resistance. In addition, critical shear stress, critical stream power and critical unit energy of water-carrying section ranged from 1.1950 to 1.6427 Pa, from 0.0132 to 0.3045 N•m<sup>-1</sup>•s<sup>-1</sup> and from 0.0052 to 0.0062 m, respectively, all of them showed obvious fluctuations with the increase of elevation. These research results highlighted the effect of elevation on soil erosion resistance in the WLFZ and provide theoretical guidance for the establishment of soil and water loss prediction model as well as the development of soil and water conservation planning and controlling in the TGR area.</p><p> </p>


2020 ◽  
Author(s):  
Peiqing Xiao ◽  
wenyi yao ◽  
pan zhang ◽  
chunxia yang

<p>Pisha sandstone region is the most vulnerable and the most dramatic area of soil erosion, and it is also the concentrated area of the coarse sediment entering into the Yellow River. It is of great significance to research the anti-erosion and vegetation promotion technology in the Pisha sandstone region. Based on the new concept of anti-erosion and vegetation promotion, surface composition, chemical properties and particle structure of the Pisha sandstone particles were analyzed, and the lithologic mechanism of the easy-corrosion of the Pisha sandstone was revealed. High-tech materials suitable for anti-erosion and vegetation-promoting of Pisha sandstonewas developed. A Pisha sandstone dam using modified silt has been built. The field experiments were monitoredfor the effects of the anti-erosion and vegetation-promoting technology on controlling soil erosion. The results showed that: (1) The grain structureand pore cementation of Pisha sandstone leading to the high affinity of the Pisha sandstone and water; The high content of montmorillonite, calcite and feldspar and the development of pore micro-structure in the Pisha sandstone are the main reasons for the poor soil erosion resistance of the Pisha sandstone. (2) Anti-erosion and vegetation-promoting materials(W-OH) based on hydrophilic polyurethane resin combined with anti-UV stabilizer, aquasorb and vegetation growth promoter can encapsulate the Pisha sandstone particles and composethe composite with Pisha sandstone for erosion resistance and vegetation promotion, degradationcontrol freeze-thaw resistance, hydrolysis resistance and environmental friendliness. (3) The simulation analysis of materials and technology for the dam construction was carried out by using mechanics and chemical experiments. The dam design scheme and key procedures were further verified based on the field experiment, and the dam construction using modified materials of pisha sandstone was developed. The silt damusing modified Pisha sandstone was built in the Erlaohugou watershed. The dam height is 10.03 m, the controlled watershed area is 0.31 km<sup>2</sup>, and the total storage capacity is 32,600 m<sup>3</sup>. (4) According to the grading of different slopes of the Pisha sandstone and the diversity of its composition, the allocation model of the anti-erosion and vegetation-promoting treatment measures for the Pisha sandstone was proposed. In the top of the slope area, three-dimensional ecological measures such as grass, shrub and arbor mixed with intercepting ditch and other engineering measures were arranged. The technology of spraying anti-erosion and vegetation-promoting materials of low-concentration and planting vegetation measures was used on gentle slopes; the measures of spraying anti-erosion and vegetation-promoting materials of high-concentration combined with vegetation growth was adopted in steep slopes,and the consolidation material is sprayed to prevent weathering and gravity erosion of the Pisha sandstone. (5) The analysis of field plot data showed that the Anti-erosion and vegetation-promoting composite materials and the measures had obvious effects of controlling slope runoff, reducing soil erosion and vegetation restorationcompared with the bare soil plot, the runoff was reduced by more than 70%, the sediment yield was reduced by more than 90%, and the vegetation coverage was reached over 95%.</p><p> </p>


CATENA ◽  
2017 ◽  
Vol 153 ◽  
pp. 61-65 ◽  
Author(s):  
Qiang Li ◽  
Guo-Bin Liu ◽  
Zheng Zhang ◽  
Deng-Feng Tuo ◽  
Ru-ru Bai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document