A gis-based distributed parameter hydrologic model for urban areas

1993 ◽  
Vol 7 (1) ◽  
pp. 45-61 ◽  
Author(s):  
Michael B. Smith
2016 ◽  
Vol 75 (4) ◽  
pp. 823-832 ◽  
Author(s):  
Farhad Hooshyaripor ◽  
Jafar Yazdi

This research presents a simulation-optimization model for urban flood mitigation integrating Non-dominated Sorting Genetic Algorithm (NSGA-II) with Storm Water Management Model (SWMM) hydraulic model under a curve number-based hydrologic model of low impact development technologies in Gonbad-e-Kavus, a small city in the north of Iran. In the developed model, the best performance of the system relies on the optimal layout and capacity of retention ponds over the study area in order to reduce surcharge from the manholes underlying a set of storm event loads, while the available investment plays a restricting role. Thus, there is a multi-objective optimization problem with two conflicting objectives solved successfully by NSGA-II to find a set of optimal solutions known as the Pareto front. In order to analyze the results, a new factor, investment priority index (IPI), is defined which shows the risk of surcharging over the network and priority of the mitigation actions. The IPI is calculated using the probability of pond selection for candidate locations and average depth of the ponds in all Pareto front solutions. The IPI can help the decision makers to arrange a long-term progressive plan with the priority of high-risk areas when an optimal solution has been selected.


Author(s):  
H. Jafari ◽  
A. A. Alesheikh

With the increase in urbanization, the surface of earth and its climate are changing. These changes resulted in more frequent floodingand storm inundation in urban areas. The challenges of flooding can be addressed through several computational procedures. Due to its numerous advantages, accessible web services can be chosen as a proper format for determining the storm inundation. Web services have facilitated the integration and interactivity of the web applications. Such services made the interaction between machines more feasible. Web services enable the heterogeneous software systems to communicate with each other. A Web Processing Service (WPS) makes it possible to process spatial data with different formats. In this study, we developed a WPS to automatically calculate the amount of storm inundation caused by rainfall in urban areas. The method we used for calculating the storm inundation is based on a simplified hydrologic model which estimates the final status of inundation. The simulation process and water transfer between subcatchments are carried out respectively, without user’s interference. The implementation of processing functions in a form of processing web services gives the capability to reuse the services and apply them in other services. As a result, it would avoid creating the duplicate resources.


2015 ◽  
Vol 19 (8) ◽  
pp. 3633-3651 ◽  
Author(s):  
I. Chawla ◽  
P. P. Mujumdar

Abstract. Quantifying the isolated and integrated impacts of land use (LU) and climate change on streamflow is challenging as well as crucial to optimally manage water resources in river basins. This paper presents a simple hydrologic modeling-based approach to segregate the impacts of land use and climate change on the streamflow of a river basin. The upper Ganga basin (UGB) in India is selected as the case study to carry out the analysis. Streamflow in the river basin is modeled using a calibrated variable infiltration capacity (VIC) hydrologic model. The approach involves development of three scenarios to understand the influence of land use and climate on streamflow. The first scenario assesses the sensitivity of streamflow to land use changes under invariant climate. The second scenario determines the change in streamflow due to change in climate assuming constant land use. The third scenario estimates the combined effect of changing land use and climate over the streamflow of the basin. Based on the results obtained from the three scenarios, quantification of isolated impacts of land use and climate change on streamflow is addressed. Future projections of climate are obtained from dynamically downscaled simulations of six general circulation models (GCMs) available from the Coordinated Regional Downscaling Experiment (CORDEX) project. Uncertainties associated with the GCMs and emission scenarios are quantified in the analysis. Results for the case study indicate that streamflow is highly sensitive to change in urban areas and moderately sensitive to change in cropland areas. However, variations in streamflow generally reproduce the variations in precipitation. The combined effect of land use and climate on streamflow is observed to be more pronounced compared to their individual impacts in the basin. It is observed from the isolated effects of land use and climate change that climate has a more dominant impact on streamflow in the region. The approach proposed in this paper is applicable to any river basin to isolate the impacts of land use change and climate change on the streamflow.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1098
Author(s):  
Ahmed M. Al-Areeq ◽  
Muhammad A. Al-Zahrani ◽  
Hatim O. Sharif

Population growth and land use modification in urban areas require the use of accurate tools for rainfall-runoff modeling, especially where the topography is complex. The recent improvement in the quality and resolution of remotely sensed precipitation satisfies a major need for such tools. A physically-based, fully distributed hydrologic model and a conceptual semi-distributed model, forced by satellite rainfall estimates, were used to simulate flooding events in a very arid, rapidly urbanizing watershed in Saudi Arabia. Observed peak discharge for two flood events was used to compare hydrographs simulated by the two models, one for calibration and one for validation. To further explore the effect of watershed heterogeneity, the hydrographs produced by three implementations of the conceptual were compared against each other and against the output of the physically-based model. The results showed the ability of the distributed models to capture the effect of the complex topography and variability of land use and soils of the watershed. In general, the GSSHA model required less calibration and performed better than HEC-HMS. This study confirms that the semi-distributed HEC-HMS model cannot be used without calibration, while the GSSHA model can be the best option in the case of a lack of data. Although the two models showed good agreement at the calibration point, there were significant differences in the runoff, discharge, and infiltration values at interior points of the watershed.


2021 ◽  
Author(s):  
Arghavan Tafvizi ◽  
April James ◽  
Tricia Stadnyk ◽  
Huaxia Yao ◽  
Charles Ramcharan

<p>Hydrologists continue to be challenged in accurately predicting spatial variation in storage, runoff, and other hydrological processes in both natural and disturbed landscapes. Lakes and wetlands are important hydrologic stores in Precambrian shield watersheds. Identifying how they affect streamflow, independently and/or collectively is a challenge. Tracer-aided hydrologic modeling coupled with field-based stable isotope surveys offer a potentially powerful approach to investigation of mesoscale streamflow generation processes because the influence of evaporative enrichment generates a distinct signature of the surface water endmember, and continuous and distributed simulated streamflow can be tested against field observations under a range of flow conditions. The main objectives of this research are to investigate the influence of lakes and wetlands on streamflow generation by developing application of the tracer-aided hydrologic model isoWATFLOOD for the ~ 15275 km<sup>2</sup> Sturgeon - Lake Nipissing - French River (SNF) basin located on the Precambrian Shield in Northeastern Ontario, Canada. Monthly surveys of δ<sup>18</sup>O and δ<sup>2</sup>H in river flow were collected between 2013 to 2019 (weekly to monthly) across eight sub-catchments, with supporting observations of volumes and stable isotopes in snowcores, snowmelt, precipitation and groundwater. Application of the hydrologic model isoWATFLOOD to the SNF Basin is developed for the first time, allowing for simulation of discharge and stable isotopes in streamflow and soil moisture across multiple sub-catchments. In model building, consideration of differences in quaternary geology, landcover, and sub catchment locations are considered.  Landcover ranges from the boreal forests to impervious urban areas, while dominated by temperate forest, with some coverage of agriculture/disturbed impacted systems; several major sub-catchments having hydropower regulations. Previous statistical analysis has highlighted the importance of wetlands, lakes, and quaternary geology as influential on differences in hydrologic and isotope response in SNF watershed, as a result, model building is considering different landcover types as lakes and wetlands. Six different Landover are considered for generating Group Response Units (GRUs). The model is calibrated using discharge and stable water isotope.  IsoWATFLOOD can represent variation in streamflow generation across the study area. Identifying the different impacts of lakes and wetlands on streamflow generation processes in study area by applying isoWATFLOOD for the SNF watershed will be the main achievement of this study.</p>


2016 ◽  
Author(s):  
S. L. Markstrom ◽  
L. E. Hay ◽  
M. P. Clark

Abstract. An application of the Precipitation-Runoff Modeling System, a distributed-parameter hydrologic model, has been developed for the conterminous United States. In this study, two different aspects of the complexity in applying this model has been addressed: (1) the number of input parameters and (2) the interpretation of model output. Parameter sensitivity analysis was used to simplify the application of the hydrologic model through identification of parameters related to dominant hydrologic processes (baseflow, evapotranspiration, runoff, infiltration, snowmelt, soil moisture, surface runoff, and interflow) at various geog raphic scales. These processes correspond to variables for which objective functions (mean, autoregressive lag 1, and coefficient of variation) are computed. Categories of parameter sensitivity were developed in various ways, on the basis of geographic location, hydrologic process and model response. Visualization of these categories provide insight into model performance and useful information about how to structure the modeling application to take advantage of as much local information as possible. The results of this study indicates that (1) the choice of objective function and output variables have a strong influence on parameter sensitivity, (2) the dimensionality of distributed-parameter hydrology models can be reduced by removing input parameters, output variables and objective functions from consideration on the basis of selection by hydrological process, (3) different hydrological processes require different numbers of parameters for simulation, and (4) some model sensitive parameters influence only one hydrologic process, while others may influence many.


2021 ◽  
Author(s):  
Gabellani Simone ◽  
Roberto Rudari ◽  

<p>Over the last few decades, disasters resulting from natural hazards have often derailed hard-earned development progress. This is especially true in developing countries such as in sub-Saharan Africa which was the object of this study. The majority of disasters in Africa are hydro-meteorological in origin, with droughts affecting the largest number of people and floods occurring frequently along major river systems and in many urban areas. Disasters, however, can be significantly minimised with rigorous understanding of the risk, obtained using scientific risk modelling and through effective institutional and community prevention, mitigation and preparedness. Specifically, this study focuses on the risk assessment due to both Floods and Droughts in 16 countries in Sub-Saharan Africa. The study describes the crucial role of a physically based regional hydrologic model as a common engine to assess drought and flood hazard and their subsequent risk implications on people and economy. The hydrologic simulations are at the basis of the fully probabilistic approach adopted in the study. The study develops risk estimates in both current and future climate conditions, using RCP8.5 projections, paired with socio economic development (i.e., considering population and GDP growth). Results are discussed in terms of impacts on population and different key sectors of the African economy, such as agriculture and infrastructure, while especially focusing on the direct economic losses caused by flood and drought disasters and on the  food security implications of drought disasters.</p>


Sign in / Sign up

Export Citation Format

Share Document