scholarly journals GD2‐directed CAR‐T cells in combination with HGF‐targeted neutralizing antibody (AMG102) prevent primary tumor growth and metastasis in Ewing sarcoma

2020 ◽  
Vol 146 (11) ◽  
pp. 3184-3195 ◽  
Author(s):  
Manish Charan ◽  
Piyush Dravid ◽  
Maren Cam ◽  
Anthony Audino ◽  
Amy C. Gross ◽  
...  
2019 ◽  
Vol 116 (48) ◽  
pp. 24275-24284 ◽  
Author(s):  
Matthias Mulazzani ◽  
Simon P. Fräßle ◽  
Iven von Mücke-Heim ◽  
Sigrid Langer ◽  
Xiaolan Zhou ◽  
...  

T cells expressing anti-CD19 chimeric antigen receptors (CARs) demonstrate impressive efficacy in the treatment of systemic B cell malignancies, including B cell lymphoma. However, their effect on primary central nervous system lymphoma (PCNSL) is unknown. Additionally, the detailed cellular dynamics of CAR T cells during their antitumor reaction remain unclear, including their intratumoral infiltration depth, mobility, and persistence. Studying these processes in detail requires repeated intravital imaging of precisely defined tumor regions during weeks of tumor growth and regression. Here, we have combined a model of PCNSL with in vivo intracerebral 2-photon microscopy. Thereby, we were able to visualize intracranial PCNSL growth and therapeutic effects of CAR T cells longitudinally in the same animal over several weeks. Intravenous (i.v.) injection resulted in poor tumor infiltration of anti-CD19 CAR T cells and could not sufficiently control tumor growth. After intracerebral injection, however, anti-CD19 CAR T cells invaded deeply into the solid tumor, reduced tumor growth, and induced regression of PCNSL, which was associated with long-term survival. Intracerebral anti-CD19 CAR T cells entered the circulation and infiltrated distant, nondraining lymph nodes more efficiently than mock CAR T cells. After complete regression of tumors, anti-CD19 CAR T cells remained detectable intracranially and intravascularly for up to 159 d. Collectively, these results demonstrate the great potential of anti-CD19 CAR T cells for the treatment of PCNSL.


2012 ◽  
Vol 72 (21) ◽  
pp. 5600-5612 ◽  
Author(s):  
Shibu Thomas ◽  
Michael A. Harding ◽  
Steven C. Smith ◽  
Jonathan B. Overdevest ◽  
Matthew D. Nitz ◽  
...  

2010 ◽  
Vol 181 (6) ◽  
pp. 611-619 ◽  
Author(s):  
Ingrid Henneke ◽  
Susanne Greschus ◽  
Rajkumar Savai ◽  
Martina Korfei ◽  
Philipp Markart ◽  
...  

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3354-3354
Author(s):  
Hong Liu ◽  
Li Long ◽  
Shon Green ◽  
Lucas H Horan ◽  
Bryan Zimdahl ◽  
...  

Abstract Anti-CD19 chimeric antigen receptor (CAR) T cell therapies for B cell malignancies have demonstrated the remarkable curative potential of T cell immunotherapies. However, in clinical trials anti-CD19-CAR T cells continue to trigger life threatening adverse events that are often associated with excessive cytokine release and excessive T-cell proliferation. We reasoned that the activation pathway of current CAR T cells could be altered to better regulate proliferation and cytokine secretion, and thus disentangle the correlation between cytokine release syndrome (CRS) and efficacy of T cell-based therapies. Through protein engineering, we developed the ARTEMISTM (1) signaling platform which when expressed on primary T-cells results in a dramatic reduction of cytokine release during tumor cell lysis, without sacrificing efficacy. Using a human phage display library, we also identified several human CD19 antibodies with improved specificity and affinity that will be less immunogenic as compared to the murine-derived anti-CD19 antibodies that are currently used in most trials. Our lead antibody clone CD19(7) was then engineered into both CD28z-CAR and ARTEMISTM platforms for comparison. When tested in vitro, both CD19(7)-ARTEMISTM T cells and CD19(7)-CD28z-CAR T cells specifically lysed multiple CD19+ leukemia and lymphoma cell lines with similar potencies. However, during the 16 hour killing assays, ARTEMIS™ T cells secreted over 1000-fold less IL-2 and dramatically lower levels of IFN-γ, GM-CSF, IL-10 and IL-6. ARTEMISTM T cells also accumulated less PD-1, LAG3, and TIM3 on their surface during culturing and following in vitro killing, indicating a diminished propensity for exhaustion. Furthermore, during in vitro T cell expansion, ARTEMISTM cells were enriched for naïve/central memory subpopulations, had lower expression of granzyme B, a marker of terminal differentiation, and had reduced rates of receptor internalization upon antigen engagement. These characteristics suggest that T-cells activated through the ARTEMISTM receptor will have improved persistence and long-term proliferation potential, as well as a safer, more controlled cytokine release when used for T-cell therapies. When tested in vivo against CD19+ Raji systematic lymphoma xenografts, intravenous administration of CD19(7)-ARTEMISTM T cells caused rapid, complete, and lasting tumor regression that was better than that achieved with an equal dose of CD19(7)-CD28z-CAR T cells (Figure 1). In agreement with our in vitro data, mice treated with ARTEMISTM T cells had nearly undetectable levels of cytokines in their blood at 24 hours post dosing, a time in which CD19(7)-CAR-treated mice had markedly elevated levels of human IFN-γ, IL-2, TNFα, and IL-10. While flow cytometry analysis of the peripheral blood showed that CD19(7)-CAR T cells expanded more rapidly in mice, CD19(7)-ARTEMISTM T cells better controlled Raji tumor growth and were negative for PD-1 expression which was high on circulating CAR T cells. At 7 weeks post dosing, a time when all ARTEMISTM T cell-treated mice had no detectable tumors, they were re-challenged with Raji lymphoma. While tumors grew rapidly in control mice, ARTEMISTM T cell-treated mice resisted the Raji lymphoma re-challenge, indicating that ARTEMISTM T cells persisted in these mice despite the absence of tumors and remained antigen-responsive (Figure 2). Our data demonstrates that CD19(7)-ARTEMISTM T cells are highly potent against lymphoma preclinical models while releasing drastically lower levels of cytokines. Thus we have developed and pre-clinically validated a novel fully human anti-CD19 T cell therapy that has the potential to persist longer in patients and, importantly, presents a lower risk of cytokine-related toxicities without compromising efficacy. A clinical trial testing CD19(7)-ARTEMISTM T cell therapy in humans is expected to begin in 2017. Figure 1 Raji lymphoma tumor growth in NSG mice treated with either donor-matched untransduced T cells (Mock), CD19(7)-CAR, or CD19(7)-ARTEMISTM T cells (5x106 receptor-positive cells per mouse) Figure 1. Raji lymphoma tumor growth in NSG mice treated with either donor-matched untransduced T cells (Mock), CD19(7)-CAR, or CD19(7)-ARTEMISTM T cells (5x106 receptor-positive cells per mouse) Figure 2 Raji lymphoma tumor growth in NSG mice previously treated with CD19(7)-ARTEMISTM T cells who had complete regression (0.5x106 Raji cells/mouse). As controls, Raji-naïve mice were implanted with Raji cells following an injection of Mock T cells. (1)ARTEMISTM is trademarked by Eureka Therapeutics, Inc. Figure 2. Raji lymphoma tumor growth in NSG mice previously treated with CD19(7)-ARTEMISTM T cells who had complete regression (0.5x106 Raji cells/mouse). As controls, Raji-naïve mice were implanted with Raji cells following an injection of Mock T cells. / (1)ARTEMISTM is trademarked by Eureka Therapeutics, Inc. Disclosures Liu: Eureka Therapeutics: Employment, Equity Ownership, Patents & Royalties. Long:Eureka Therapeutics: Employment, Equity Ownership. Green:Eureka Therapeutics: Employment. Horan:Eureka Therapeutics: Employment. Zimdahl:Eureka Therapeutics: Employment. Liu:Eureka Therapeutics: Employment, Equity Ownership, Patents & Royalties.


Author(s):  
Bingfeng Liu ◽  
Wanying Zhang ◽  
Baijin Xia ◽  
Shuliang Jing ◽  
Yingying Du ◽  
...  

Cancers ◽  
2017 ◽  
Vol 9 (12) ◽  
pp. 139 ◽  
Author(s):  
Vita Golubovskaya ◽  
Robert Berahovich ◽  
Hua Zhou ◽  
Shirley Xu ◽  
Hizkia Harto ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Fan Zou ◽  
Lijuan Lu ◽  
Jun Liu ◽  
Baijin Xia ◽  
Wanying Zhang ◽  
...  

Abstract The inhibitory receptors PD-1, Tim-3, and Lag-3 are highly expressed on tumor-infiltrating lymphocytes and compromise their antitumor activity. For efficient cancer immunotherapy, it is important to prevent chimeric antigen receptor T (CAR-T)-cell exhaustion. Here we downregulate these three checkpoint receptors simultaneously on CAR-T cells and that show the resulting PTL-CAR-T cells undergo epigenetic modifications and better control tumor growth. Furthermore, we unexpectedly find increased tumor infiltration by PTL-CAR-T cells and their clustering between the living and necrotic tumor tissue. Mechanistically, PTL-CAR-T cells upregulate CD56 (NCAM), which is essential for their effector function. The homophilic interaction between intercellular CD56 molecules correlates with enhanced infiltration of CAR-T cells, increased secretion of interferon-γ, and the prolonged survival of CAR-T cells. Ectopically expressed CD56 promotes CAR-T cell survival and antitumor response. Our findings demonstrate that genetic blockade of three checkpoint inhibitory receptors and the resulting high expression of CD56 on CAR-T cells enhances the inhibition of tumor growth.


Sign in / Sign up

Export Citation Format

Share Document