Fabrication and characterization of small-diameter vascular prostheses

1988 ◽  
Vol 22 (S14) ◽  
pp. 245-256 ◽  
Author(s):  
R. R. Kowligi ◽  
W. W. von Maltzahn ◽  
R. C. Eberhart
2020 ◽  
Vol 15 (5) ◽  
pp. 055004
Author(s):  
Nafiseh Jirofti ◽  
Davod Mohebbi-Kalhori ◽  
Abdolreza Samimi ◽  
Afra Hadjizadeh ◽  
Gholam Hossein Kazemzadeh

Author(s):  
S.F. Corcoran

Over the past decade secondary ion mass spectrometry (SIMS) has played an increasingly important role in the characterization of electronic materials and devices. The ability of SIMS to provide part per million detection sensitivity for most elements while maintaining excellent depth resolution has made this technique indispensable in the semiconductor industry. Today SIMS is used extensively in the characterization of dopant profiles, thin film analysis, and trace analysis in bulk materials. The SIMS technique also lends itself to 2-D and 3-D imaging via either the use of stigmatic ion optics or small diameter primary beams.By far the most common application of SIMS is the determination of the depth distribution of dopants (B, As, P) intentionally introduced into semiconductor materials via ion implantation or epitaxial growth. Such measurements are critical since the dopant concentration and depth distribution can seriously affect the performance of a semiconductor device. In a typical depth profile analysis, keV ion sputtering is used to remove successive layers the sample.


2019 ◽  
Vol 35 (4) ◽  
pp. 475-484
Author(s):  
SHIVA ARUN ◽  
◽  
PRABHA BHARTIYA ◽  
AMREEN NAZ ◽  
SUDHEER RAI ◽  
...  

2019 ◽  
Vol 139 (11) ◽  
pp. 375-380
Author(s):  
Harutoshi Takahashi ◽  
Yuta Namba ◽  
Takashi Abe ◽  
Masayuki Sohgawa

2015 ◽  
Vol 135 (11) ◽  
pp. 474-475
Author(s):  
Koji Sugano ◽  
Ryoji Hiraoka ◽  
Toshiyuki Tsuchiya ◽  
Osamu Tabata

Sign in / Sign up

Export Citation Format

Share Document