Development of a biodegradable scaffold with interconnected pores by heat fusion and its application to bone tissue engineering

2008 ◽  
Vol 84A (3) ◽  
pp. 702-709 ◽  
Author(s):  
Michael Shin ◽  
Harutsugi Abukawa ◽  
Maria J. Troulis ◽  
Joseph P. Vacanti
2011 ◽  
Vol 493-494 ◽  
pp. 718-722 ◽  
Author(s):  
Masoud Hafezi-Ardakani ◽  
Faranak Kavian ◽  
Fatollah Moztarzadeh ◽  
Mohamadreza Baghaban Eslaminejad ◽  
Ali Zamanian ◽  
...  

A novel merwinite/ Poly(lactic-co-glycolic) nanocomposite was synthesized by a solvent casting/salt leaching technique with varying merwinite contents from 10 to 30% (w/w). Poly(lactic-co-glycolic) /merwinite foams with a co-continuous structure of interconnected pores were formed. The microstructure of the pores and the walls was controlled by varying the merwinite content. The pore structure becomes more and more irregular with increasing merwinite content. Pore sizes ranging from several microns to a few hundred microns were obtained. The degradation assessment of the scaffolds is performed in phosphate-buffered saline (PBS) solution at 37°C. Weight loss during storage at 37°C in PBS (pH 7.4) was determined for the scaffolds. Weight loss increased from pure to high content during incubation time. The prepared merwinite/ (Polylactic-co-glycolic) nanocomposite with uniform microstructure may be used in bone tissue engineering applications.


2011 ◽  
Vol 493-494 ◽  
pp. 826-831
Author(s):  
A.C.B.M. Fook ◽  
Thiago Bizerra Fideles ◽  
R.C. Barbosa ◽  
G.T.F.S. Furtado ◽  
G.Y.H. Sampaio ◽  
...  

The application of a hybrid composite consisting of biopolymer and calcium phosphate, similar morphology and properties of natural bone, may be a way to solve the problem of the fragility of ceramics without reducing its mechanical properties, retaining the properties of biocompatibility and high bioactivity. This work aims at the preparation and characterization of three-dimensional scaffolds composite HA / biopolymers (chitosan and gelatin). The freeze-drying technique was employed in this study to obtain these frameworks and partial results showed the effectiveness of this method. This involved the study of structural, chemical and morphological frameworks, in order to direct the research suggested the application. The X Ray Diffraction (XRD) and infrared spectroscopy and Fourier transform (FTIR) results confirmed the formation of hydroxyapatite (HA) phase and the presence of characteristic bands of HA and biopolymers in all compositions. The microstructure of the scaffolds study conducted by Scanning Electron Microscopy (SEM) revealed the formation of longitudinally oriented microchannels with interconnected pores. In all compositions the porous scaffolds showed varying sizes and mostly larger than 100μm, and is therefore considered materials with potential for application in bone tissue engineering.


2012 ◽  
Vol 529-530 ◽  
pp. 34-39 ◽  
Author(s):  
J. Feng ◽  
M. Chong ◽  
J. Chan ◽  
Z.Y. Zhang ◽  
S.H. Teoh ◽  
...  

The current available microcarriers were mainly targeted towards pharmaceutical industries, and might not be suitable for therapeutic implantation. As such, apatite-based microcarriers intended for bone tissue engineering applications would be featured here. Hydroxyapatite-Alginate (HA-Alg) suspension was extruded drop-wise into a calcium chloride (CaCl2) crosslinking solution. The HA-Alg microcarriers were then sintered to form microcarriers of uniform size. The physicochemical properties were analysed by scanning electron microscopy (SEM), X-ray diffractometery (XRD), and fourier transform infrared (FTIR) spectrophotometry. Cell viability on these microcarriers was evaluated using human fetal mesenchymal stem cells (hfMSCs). SEM images revealed that sintered apatite-based microcarriers exhibited a rough surface topology with interconnected pores. XRD results showed that these microcarriers remained phase pure since no other secondary calcium phosphate phases were detected. FTIR analysis indicated several sharp phosphate bands coupled with a hydroxyl band (all belonging to HA). Live/dead staining showed that hfMSCs remained viable after 14 days of culture, and cells have spread and covered the surfaces of the microcarriers. Certainly, these cell-loaded microcarriers could be potentially used in bone implant science.


2021 ◽  
Author(s):  
Praseetha R Nair ◽  
Sreeja S ◽  
G.S. Sailaja

This study demonstrates the strategic fabrication of Cissus quadrangularis (CQ) hexane extract integrated porous chitosan-collagen (CH-CO-HE) biodegradable scaffold crosslinked with glyoxal, a biocompatible cross-linker, that enables sufficient mechanical stability and...


2016 ◽  
Vol 19 (2) ◽  
pp. 93-100
Author(s):  
Lalita El Milla

Scaffolds is three dimensional structure that serves as a framework for bone growth. Natural materials are often used in synthesis of bone tissue engineering scaffolds with respect to compliance with the content of the human body. Among the materials used to make scafffold was hydroxyapatite, alginate and chitosan. Hydroxyapatite powder obtained by mixing phosphoric acid and calcium hydroxide, alginate powders extracted from brown algae and chitosan powder acetylated from crab. The purpose of this study was to examine the functional groups of hydroxyapatite, alginate and chitosan. The method used in this study was laboratory experimental using Fourier Transform Infrared (FTIR) spectroscopy for hydroxyapatite, alginate and chitosan powders. The results indicated the presence of functional groups PO43-, O-H and CO32- in hydroxyapatite. In alginate there were O-H, C=O, COOH and C-O-C functional groups, whereas in chitosan there were O-H, N-H, C=O, C-N, and C-O-C. It was concluded that the third material containing functional groups as found in humans that correspond to the scaffolds material in bone tissue engineering.


Author(s):  
Mariane Beatriz Sordi ◽  
Ariadne Cristiane Cabral da Cruz ◽  
Águedo Aragones ◽  
Mabel Mariela Rodríguez Cordeiro ◽  
Ricardo de Souza Magini

The aim of this study was to synthesize, characterize, and evaluate degradation and biocompatibility of poly(lactic-co-glycolic acid) + hydroxyapatite / β-tricalcium phosphate (PLGA+HA/βTCP) scaffolds incorporating simvastatin (SIM) to verify if this biomaterial might be promising for bone tissue engineering. Samples were obtained by the solvent evaporation technique. Biphasic ceramic particles (70% HA, 30% βTCP) were added to PLGA in a ratio of 1:1. Samples with SIM received 1% (m:m) of this medication. Scaffolds were synthesized in a cylindric-shape and sterilized by ethylene oxide. For degradation analysis, samples were immersed in PBS at 37 °C under constant stirring for 7, 14, 21, and 28 days. Non-degraded samples were taken as reference. Mass variation, scanning electron microscopy, porosity analysis, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetry were performed to evaluate physico-chemical properties. Wettability and cytotoxicity tests were conducted to evaluate the biocompatibility. Microscopic images revealed the presence of macro, meso, and micropores in the polymer structure with HA/βTCP particles homogeneously dispersed. Chemical and thermal analyses presented very similar results for both PLGA+HA/βTCP and PLGA+HA/βTCP+SIM. The incorporation of simvastatin improved the hydrophilicity of scaffolds. Additionally, PLGA+HA/βTCP and PLGA+HA/βTCP+SIM scaffolds were biocompatible for osteoblasts and mesenchymal stem cells. In summary, PLGA+HA/βTCP scaffolds incorporating simvastatin presented adequate structural, chemical, thermal, and biological properties for bone tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document