Double hydrophilic block copolymers PEO‐b‐PGA: Synthesis, application as potential drug carrier and drug release via pH‐sensitive linkage

2008 ◽  
Vol 86A (2) ◽  
pp. 428-438 ◽  
Author(s):  
Xuezhi Tang ◽  
Cai‐Yuan Pan
2018 ◽  
Vol 6 (45) ◽  
pp. 7495-7502 ◽  
Author(s):  
YangYang Xu ◽  
Gaocan Li ◽  
Weihua Zhuang ◽  
HongChi Yu ◽  
Yanfei Hu ◽  
...  

Thermal-induced micelles prepared with P(NIPAAm-co-TPE)-b-POEGMA double hydrophilic block copolymers for hydrophilic drug release. Hydrogen bonds are formed between PNIPAAm and thymopentin.


2004 ◽  
Vol 76 (7-8) ◽  
pp. 1295-1307 ◽  
Author(s):  
E. R. Gillies ◽  
J. M. J. Fréchet

In recent years, supramolecular micellar assemblies formed from amphiphilic block copolymers have been receiving attention as potential drug carriers. The size of the carriers is ideal for avoiding rapid renal exclusion and reticuloendothelial uptake, and enables them to be targeted to certain tissues such as tumors. One important issue determining the effectiveness of a micellar drug carrier is the ability to control the time over which drug release takes place, or to possibly trigger drug release at a specific location or time. The mildly acidic pH encountered in tumor and inflammatory tissues as well as in the endosomal and lysosomal compartments of cells has inspired the development of micellar carriers capable of releasing their drug load in response to small changes in pH. One approach to the development of these systems has been to incorporate “titratable” groups such as amines and carboxylic acids into the copolymer backbone, thus altering the solubility of the polymer upon protonation and disrupting micelle formation. Another approach has been to incorporate acid-degradable linkages into the copolymer, either for direct attachment of the drug, or to cause a structural change of such magnitude that micellar integrity is lost and the drug is released.


2019 ◽  
Author(s):  
Fatimah. A. Agili ◽  
Sahera. F. Mohamed

AbstractThe pH-sensitive nanocomposite composed of sodium alginate/ Pectin/ Tannic acid – silver SA/Pec/TA-Ag was prepared using microwave irradiation and employed as a carrier for Propranolol drug. Physico-chemical characteristics of the prepared systems using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), High-Resolution Transmission Electron Microscope (HRTEM), Dynamic light Scattering instrument (DLS), and Energy Dispersive X-Ray Analysis (EDX). The percentage drug release was 96% at pH 7.4 within 420 min. The drug release data was fitted into different kinetic models included zero order, First order, Higuchi and Ritger-Peppas model. The release mechanism is non-Fickian character where it controlled by diffusion and relaxation of polymer chains. It can be concluded that SA/Pec/TA-Ag nanocomposite is candidate for the oral drug carrier specific for intestinal system and has stability against gastric fluid.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6142
Author(s):  
Bożena Łosiewicz ◽  
Agnieszka Stróż ◽  
Patrycja Osak ◽  
Joanna Maszybrocka ◽  
Anna Gerle ◽  
...  

This work concerns the development of a method of functionalization of the surface of the biomedical Ti–6Al–7Nb alloy by producing oxide nanotubes (ONTs) with drug-eluting properties. Shaping of the morphology, microstructure, and thickness of the oxide layer was carried out by anodization in an aqueous solution of 1 M ethylene glycol with the addition of 0.2 M NH4F in the voltage range 5–100 V for 15–60 min at room temperature. The characterization of the physicochemical properties of the obtained ONTs was performed using SEM, XPS, and EDAX methods. ONTs have been shown to be composed mainly of TiO2, Al2O3, and Nb2O5. Single-walled ONTs with the largest specific surface area of 600 cm2 cm−2 can be obtained by anodization at 50 V for 60 min. The mechanism of ONT formation on the Ti–6Al–7Nb alloy was studied in detail. Gentamicin sulfate loaded into ONTs was studied using FTIR, TG, DTA, and DTG methods. Drug release kinetics was determined by UV–Vis spectrophotometry. The obtained ONTs can be proposed for use in modern implantology as carriers for drugs delivered locally in inflammatory conditions.


2019 ◽  
Vol 28 (8-9) ◽  
pp. 598-608
Author(s):  
Fatimah A Agili ◽  
Sahera FM Aly

A pH-sensitive nanocomposite formed from sodium alginate (SA)/pectin (Pec)/tannic acid (TA)–silver (Ag) was developed using microwave irradiation and it was applied as a carrier for propranolol drug. TA acts as a cross-linker and a reducing agent for Ag ions. Physicochemical characteristics of the fabricated system using Fourier transform infrared spectroscopy, X-ray diffraction, field-emission scanning electron microscope, high-resolution transmission electron microscope, dynamic light scattering instrument, and energy dispersive X-ray analysis. The swelling percent and the drug release were observed to be pH-sensitive. The occurrence of Ag nanoparticles in the network enhances the drug release that is 96% at pH 7.4 within 420 min. The drug release data were adjusted into different kinetic models involved zero order, first order, Higuchi, and Ritger–Peppas models. The release mechanism is a non-Fickian character where it controls by diffusion and relaxation of polymer chains. It can be concluded that SA/Pec/TA-Ag nanocomposite is a candidate for the oral drug carrier specific for the intestinal system and has ability against the gastric fluid.


RSC Advances ◽  
2017 ◽  
Vol 7 (15) ◽  
pp. 9347-9356 ◽  
Author(s):  
Ming Zhang ◽  
Ping Yuan ◽  
Ninglin Zhou ◽  
Yutian Su ◽  
Maoni Shao ◽  
...  

In this study, doxorubicin (DOX) hydrochloride as a model drug, N-doped carbon dots as a drug carrier, and heparin as an auxiliary medicine were selected to design and prepare a multi-functional drug delivery system with pH-triggered drug release.


Sign in / Sign up

Export Citation Format

Share Document