Evaluation of bone healing with eggshell-derived bone graft substitutes in rat calvaria: A pilot study

2008 ◽  
Vol 87A (1) ◽  
pp. 203-214 ◽  
Author(s):  
Jin-Woo Park ◽  
Sang-Ryul Bae ◽  
Jo-Young Suh ◽  
Dong-Hee Lee ◽  
Sang-Hyun Kim ◽  
...  
2021 ◽  
Vol 32 (2) ◽  
pp. 526-530
Author(s):  
Takuya Uemura ◽  
Koichi Yano ◽  
Kiyohito Takamatsu ◽  
Yusuke Miyashima ◽  
Hiroyuki Yasuda ◽  
...  

Romosozumab is a humanized, anti-sclerostin monoclonal antibody used to treat osteoporosis, which increases bone formation and decreases bone resorption. It enhances fracture healing and systemic romosozumab administration may have therapeutic potentials for accelerating bone healing of even nonunion. Herein, a 61-year-old heavy smoker male with distal radius nonunion who achieved successful bone union by combination therapy of romosozumab and spanning distraction plate fixation with bone graft substitutes was presented. Through the dorsal approach, atrophic comminuted nonunion of the distal radius was sufficiently debrided. Reduction of the distal radius was performed using indirect ligamentotaxis, and a 14-hole locking plate was fixed from the third metacarpal to the radial shaft. A beta (β) tricalcium phosphate block was mainly packed into the substantial metaphyseal bone defect with additional bone graft from the resected ulnar head. Postoperatively, systemic administration of monthly romosozumab was continued for six months. Complete bone union was achieved 20 weeks postoperatively and the plate was, then, removed. Wrist extension and flexion improved to 75o and 55o, respectively, without pain, and grip strength increased 52 weeks postoperatively from 5.5 kg to 22.4 kg. During romosozumab treatment, bone formation marker levels increased rapidly and finally returned to baseline, and bone resorption marker levels remained low. In conclusion, combination of systemic romosozumab administration and grafting β-tricalcium phosphate with bridge plating provides an effective treatment option for difficult cases of comminuted distal radius nonunion with risk factors such as smoking, diabetes, and fragility.


2019 ◽  
Vol 48 ◽  
Author(s):  
Mauricio Andrés Tinajero ARONI ◽  
Paulo Firmino da COSTA NETO ◽  
Guilherme José Pimentel Lopes de OLIVEIRA ◽  
Rosemary Adriana Chiérici MARCANTONIO ◽  
Elcio MARCANTONIO JUNIOR

Abstract Introduction The use of bone substitutes in grafting procedures as an alternative of the use of autogenous bone graft has been indicated, however, the direct comparison between these biomaterials has been little explored. Objective To evaluate the effect of different osteoconductive bone substitutes on the bone repair in critical-sized defects (CSDs) in rat calvaria. Material and method One CSD with an 8 mm diameter was made in each of the 40 rats used in this study. The animals were randomly allocated into 5 groups (n=8), according to the type of bone substitute used to fill the CSD: COA (Coagulum); AUT (autogenous bone); DBB (deproteinized bovine bone graft); HA/TCP (biphasic ceramic composed of hydroxyapatite and β-phosphate tricalcium); and TCP (β-phosphate tricalcium). A microtomographic analysis was performed to evaluate the remaining defect linear length (DLL) of the CSD and the volume of the mineralized tissues (MT) within the CSD at 3, 7, 15 and 30 days after the surgical procedure. In addition, a histometric analysis was performed to evaluate the composition of the repaired bone tissue (% Bone and % Biomaterial) at the 30-day period. Result It was shown that the COA had the lowest DLL and MT within the CSD. In addition, the COA presented the highest % of bone in CSD. The DBB had a higher MT and a higher % of bone substitute particles in the CSD than the AUT and TCP groups. The DBB and AUT groups presented higher % of bone in the CSD than the TCP group. Conclusion The use of the DBB promoted a better pattern of bone volume gain and formation compared to TCP and HA / TCP but was biologically inferior to the AUT.


Author(s):  
A. Uraz ◽  
SE. Gultekin ◽  
B. Senguven ◽  
B. Karaduman ◽  
IP. Sofuoglu ◽  
...  

2016 ◽  
Vol 25 (4) ◽  
pp. 509-516 ◽  
Author(s):  
Zorica Buser ◽  
Darrel S. Brodke ◽  
Jim A. Youssef ◽  
Hans-Joerg Meisel ◽  
Sue Lynn Myhre ◽  
...  

The purpose of this review was to compare the efficacy and safety of synthetic bone graft substitutes versus autograft or allograft for the treatment of lumbar and cervical spinal degenerative diseases. Multiple major medical reference databases were searched for studies that evaluated spinal fusion using synthetic bone graft substitutes (either alone or with an autograft or allograft) compared with autograft and allograft. Randomized controlled trials (RCT) and cohort studies with more than 10 patients were included. Radiographic fusion, patient-reported outcomes, and functional outcomes were the primary outcomes of interest. The search yielded 214 citations with 27 studies that met the inclusion criteria. For the patients with lumbar spinal degenerative disease, data from 19 comparative studies were included: 3 RCTs, 12 prospective, and 4 retrospective studies. Hydroxyapatite (HA), HA+collagen, β-tricalcium phosphate (β-TCP), calcium sulfate, or polymethylmethacrylate (PMMA) were used. Overall, there were no differences between the treatment groups in terms of fusion, functional outcomes, or complications, except in 1 study that found higher rates of HA graft absorption. For the patients with cervical degenerative conditions, data from 8 comparative studies were included: 4 RCTs and 4 cohort studies (1 prospective and 3 retrospective studies). Synthetic grafts included HA, β-TCP/HA, PMMA, and biocompatible osteoconductive polymer (BOP). The PMMA and BOP grafts led to lower fusion rates, and PMMA, HA, and BOP had greater risks of graft fragmentation, settling, and instrumentation problems compared with iliac crest bone graft. The overall quality of evidence evaluating the potential use and superiority of the synthetic biological materials for lumbar and cervical fusion in this systematic review was low or insufficient, largely due to the high potential for bias and small sample sizes. Thus, definitive conclusions or recommendations regarding the use of these synthetic materials should be made cautiously and within the context of the limitations of the evidence.


Bone ◽  
2009 ◽  
Vol 45 (2) ◽  
pp. 339-345 ◽  
Author(s):  
Maria Nagata ◽  
Michel Messora ◽  
Roberta Okamoto ◽  
Natália Campos ◽  
Natália Pola ◽  
...  

2015 ◽  
Vol 1087 ◽  
pp. 429-433 ◽  
Author(s):  
Rusnah Mustaffa ◽  
Mohd Reusmaazran Mohd Yusof ◽  
Yusof Abdullah

In Malaysia recently, it was found that cockle shell (Anadara granosa) is a potential source of biomaterial for bone repair. It is the most abundant sea species cultured in Malaysia. A possible advantage of using cockle shell as a biomaterial is that they may act as an antilog of calcium carbonate. Malaysian Nuclear Agency took this challenge to develop synthetic bone graft from natural cockle shell. To date, the artificial bone graft substitutes developed from hydroxyapatite (Ca10(PO4)6(OH)2) a bio ceramic is similar to the mineral constituent of human bone. The structure and the composition of hydroxyapatite (HA) are similar to the mineral phase of bone and, its bioactivity and biocompatibility makes it a preferred bone graft.


Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 124
Author(s):  
Ana Paula Farnezi Bassi ◽  
Vinícius Ferreira Bizelli ◽  
Tamires Mello Francatti ◽  
Ana Carulina Rezende de Moares Ferreira ◽  
Járede Carvalho Pereira ◽  
...  

Biomaterials for use in guided bone regeneration (GBR) are constantly being investigated and developed to improve clinical outcomes. The present study aimed to comparatively evaluate the biological performance of different membranes during the bone healing process of 8 mm critical defects in rat calvaria in order to assess their influence on the quality of the newly formed bone. Seventy-two adult male rats were divided into three experimental groups (n = 24) based on the membranes used: the CG—membrane-free control group (only blood clot, negative control), BG—porcine collagen membrane group (Bio-Guide®, positive control), and the PCL—polycaprolactone (enriched with 5% hydroxyapatite) membrane group (experimental group). Histological and histometric analyses were performed at 7, 15, 30, and 60 days postoperatively. The quantitative data were analyzed by two-way ANOVA and Tukey’s test (p < 0.05). At 7 and 15 days, the inflammatory responses in the BG and PCL groups were significantly different (p < 0.05). The PCL group, at 15 days, showed a large area of newly formed bone. At 30 and 60 days postoperatively, the PCL and BG groups exhibited similar bone healing, including some specimens showing complete closure of the critical defect (p = 0.799). Thus, the PCL membrane was biocompatible, and has the potential to help with GBR procedures.


Sign in / Sign up

Export Citation Format

Share Document