Hyperdry human amniotic membrane is useful material for tissue engineering: Physical, morphological properties, and safety as the new biological material

2013 ◽  
Vol 102 (3) ◽  
pp. 862-870 ◽  
Author(s):  
Motonori Okabe ◽  
Kiyotaka Kitagawa ◽  
Toshiko Yoshida ◽  
Takuma Suzuki ◽  
Hiroki Waki ◽  
...  
2018 ◽  
Vol 19 (3) ◽  
pp. 357-371 ◽  
Author(s):  
Sonia Iranpour ◽  
Nasser Mahdavi-Shahri ◽  
Raheleh Miri ◽  
Halimeh Hasanzadeh ◽  
Hamid Reza Bidkhori ◽  
...  

2016 ◽  
Vol 18 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Anahí Sanluis-Verdes ◽  
Namibia Sanluis-Verdes ◽  
María Jesús Manso-Revilla ◽  
Antonio Manuel Castro-Castro ◽  
Jorge Pombo-Otero ◽  
...  

Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 606
Author(s):  
Dilcele Silva Moreira Dziedzic ◽  
Bassam Felipe Mogharbel ◽  
Ana Carolina Irioda ◽  
Priscila Elias Ferreira Stricker ◽  
Maiara Carolina Perussolo ◽  
...  

Periodontitis is a prevalent disease characterized by the loss of periodontal supporting tissues, bone, periodontal ligament, and cementum. The application of a bone tissue engineering strategy with Decellularized Human Amniotic Membrane (DAM) with adipose-derived stromal cells (ASCs) has shown to be convenient and valuable. This study aims to investigate the treatments of a rat periodontal furcation defect model with DAM, ASCs, and a mineralized extracellular matrix (ECM). Rat ASCs were expanded, cultivated on DAM, and with a bone differentiation medium for four weeks, deposited ECM on DAM. Periodontal healing for four weeks was evaluated by micro-computed tomography and histological analysis after treatments with DAM, ASCs, and ECM and compared to untreated defects on five consecutive horizontal levels, from gingival to apical. The results demonstrate that DAM preserves its structure during cultivation and healing periods, supporting cell attachment, permeation, bone deposition on DAM, and periodontal regeneration. DAM and DAM+ASCs enhance bone healing compared to the control on the gingival level. In conclusion, DAM with ASC or without cells and the ECM ensures bone tissue healing. The membrane supported neovascularization and promoted osteoconduction.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Jaclyn A Brennan ◽  
Julien H Arrizabalaga ◽  
Matthias U Nollert

There exists a clear need for alternative sources of small-diameter vascular grafts for treating the millions of patients who suffer from cardiovascular disease each year. Bypass surgery or replacement of defective vessels is often required to treat coronary heart disease, but there is a limited supply of suitable autologous grafts, and synthetic grafts are ineffective for replacement of small-diameter vessels. Inherent thrombogenicity, compliance mismatch, and limited patency rates are all complications with current options. Tissue engineering has the potential to overcome these limitations by producing a readily-available vascular graft completely from biological material. It is the objective of this study to fabricate such a small-diameter tissue engineered blood vessel (TEBV) by using the human amniotic membrane as a mechanically-sound biological substrate. Our technology begins by differentiating adipose-derived stem cells into smooth muscle cells (SMCs) and seeding them onto a flat sheet of the amniotic membrane. We assessed our hypothesis that several types of SMCs can successfully attach and proliferate on this membrane by fluorescently staining cell nuclei with DAPI and characteristic SMC actin filaments with phallotoxins. After 7 days in static culture, the cell-seeded sheet was wrapped around a 3mm O.D. removable mandrel with 6-7 revolutions to develop a tubular construct with architecture akin to that of a muscular artery’s tunica media layer. After a 2 week static culture period, the TEBV was characterized for its biochemical and mechanical properties. We examined the contraction of the vessel in response to carbachol, a specific agonist for SMCs, and compared our results with the contraction of porcine coronary arteries. Burst pressure and elastic modulus tests were also performed. The mechanical integrity of this construct can be further improved upon its exposure to appropriate physiological conditions in a perfusion bioreactor. We show that adipose-derived endothelial cells (ECs) can be also be seeded into the lumen of this construct to prevent platelet adhesion. In conclusion, we have developed a small-diameter TEBV with off-the-shelf availability using a completely biological material seeded with patient-own stem cells.


2021 ◽  
Vol 22 (11) ◽  
pp. 5976
Author(s):  
Sonia López ◽  
Lía Hoz ◽  
Eda Patricia Tenorio ◽  
Beatriz Buentello ◽  
Fátima Sofía Magaña ◽  
...  

Human oral mucosa stem cells (hOMSCs) arise from the neural crest, they can self-renew, proliferate, and differentiate to several cell lines and could represent a good source for application in tissue engineering. Because of their anatomical location, hOMSCs are easy to isolate, have multilineage differentiation capacity and express embryonic stem cells markers such as—Sox2, Oct3/4 and Nanog. We have used SHEM (supplemented hormonal epithelial medium) media and cultured hOMSCs over human amniotic membrane and determined the cell’s capacity to differentiate to an epithelial-like phenotype and to express corneal specific epithelial markers—CK3, CK12, CK19, Pan-cadherin and E-cadherin. Our results showed that hOMSCs possess the capacity to attach to the amniotic membrane and express CK3, CK19, Pan-Cadherin and E-Cadherin without induction with SHEM media and expressed CK12 or changed the expression pattern of E-Cadherin to a punctual-like feature when treated with SHEM media. The results observed in this study show that hOMSCs possess the potential to differentiate toward epithelial cells. In conclusion, our results revealed that hOMSCs readily express markers for corneal determination and could provide the ophthalmology field with a therapeutic alternative for tissue engineering to achieve corneal replacement when compared with other techniques. Nevertheless, further studies are needed to develop a predictable therapeutic alternative for cornea replacement.


Sign in / Sign up

Export Citation Format

Share Document