Leucine supplementation after mechanical stimulation activates protein synthesis via L‐type amino acid transporter 1 in vitro

2017 ◽  
Vol 119 (2) ◽  
pp. 2094-2101 ◽  
Author(s):  
Naoya Nakai ◽  
Fuminori Kawano ◽  
Taro Murakami ◽  
Ken Nakata ◽  
Kazuhiko Higashida
2020 ◽  
Vol 21 (5) ◽  
pp. 1849
Author(s):  
Jie Xu ◽  
Jiao Wang ◽  
Yang Cao ◽  
Xiaotong Jia ◽  
Yujia Huang ◽  
...  

Alterations in placental transport may contribute to abnormal fetal intrauterine growth in pregnancies complicated by diabetes, but it is not clear whether the placental amino acid transport system is altered in diabetic pregnancies. We therefore studied the changes in the expressions of placental amino acid transporters in a rat model of diabetes induced by streptozotocin, and tested the effects of hyperglycemia on trophoblast amino acid transporter in vitro. Our results showed that the expressions for key isoforms of system L amino acid transporters were significantly reduced in the placentas of streptozotocin-induced diabetic pregnant rats, which was associated with the decreased birthweight in the rats. A decreased placental efficiency and decreased placental mammalian target of rapamycin (mTOR) complex 1 (mTORC1) activity were also found in the rat model. In addition, hyperglycemia in vitro could inhibit amino acid transporter expression and mTORC1 activity in human trophoblast. Inhibition of mTORC1 activity led to reduced amino acid transporter expression in placental trophoblast. We concluded that reduced placental mTORC1 activity during pregnancy resulted in decreased placental amino acid transporter expression and, subsequently, contributed to fetal intrauterine growth restriction in pregnancies complicated with diabetes.


2008 ◽  
Vol 20 (1) ◽  
pp. 175
Author(s):  
S. L. Whitear ◽  
H. J. Leese

Oviduct fluid provides the environment for the gametes and early embryo but little is known about the mechanisms underlying its formation. Components of oviduct fluid have been shown to be present at concentrations different from that in blood, indicative of selective transport by the epithelial cells lining the lumen. For example, amino acid concentrations in oviduct fluid differ from those in extracellular fluid and have also been shown to be important to preimplantation embryos in vitro, enhancing development, especially when added at physiological concentrations. However, little is known about amino acid transport systems in the oviduct, and the aim of this work was to search for mRNA transcripts for amino acid transporters in bovine oviduct epithelial cells. Contra- and ipsi-lateral oviducts were removed from abattoir-derived reproductive tracts at specific stages of the reproductive cycle. Oviducts were trimmed of surrounding tissue and fat and slit longitudinally to expose the luminal surface. Bovine oviduct epithelial cells (bOEC) were scraped from the surface using a sterile glass coverslip and washed by centrifugation. mRNA was isolated using Trizol-chloroform extraction and lithium chloride precipitation methods. PCR was used to detect cDNA encoding the amino acid transporters CAT-1, CAT-4, and LAT1. A negative control (water) and a positive control (human placental cDNA) were included in each experiment and β-actin expression was used as a positive control for cDNA library generation. Products were separated by agarose gel electrophoresis. PCR for β-actin resulted in the presence of a positive band in all samples, showing successful extraction of mRNA and generation of cDNA libraries. mRNA for CAT-1 and LAT1 was detected in bOEC from contra- and ipsi-lateral oviducts and from each cycle stage tested. There was, however, no detectable mRNA for CAT-4 in any of the samples. To our knowledge, this is the first report of amino acid transporter expression in the mammalian oviduct. CAT-1 is a ubiquitous sodium-independent uniporter of cationic amino acids that has been localized to the basolateral membrane of epithelial cells. The presence of mRNA for this amino acid transporter in all samples tested is therefore to be expected. LAT1 is a obligatory exchanger which exports glutamine and cystine and imports large uncharged branched-chain amino acids. This transporter may be partly responsible for the high concentration of glutamate in the basal compartment of in vitro cell cultures reported in our previous work (Whitear and Leese 2007 Biennial Meet. Joint Fertil. Soc., York, UK). CAT-4 shares only 40% sequence homology with CAT-1 and its function is unknown. Its expression appears to be restricted to brain, testis, and placenta, and the absence of mRNA for the oviduct was, perhaps, not surprising. Further experiments will investigate expression levels of other amino acid transporters in bOEC and transporter localization using immunohistochemistry. This work was funded by the BBSRC and ANGLE Technology Ltd.


2017 ◽  
Vol 123 (6) ◽  
pp. 1501-1515 ◽  
Author(s):  
Håkan C. Rundqvist ◽  
Mona Esbjörnsson ◽  
Olav Rooyackers ◽  
Ted Österlund ◽  
Marcus Moberg ◽  
...  

Nutrient ingestion is known to increase the exercise-induced stimulation of muscle protein synthesis following resistance exercise. Less is known about the effect of nutrients on muscle protein synthesis following sprint exercise. At two occasions separated by 1 mo, 12 healthy subjects performed three 30-s sprints with 20-min rest between bouts. In randomized order, they consumed a drink with essential amino acids and maltodextrin (nutrient) or flavored water (placebo). Muscle biopsies were obtained 80 and 200 min after the last sprint, and blood samples were taken repeatedly during the experiment. Fractional synthetic rate (FSR) was measured by continuous infusion of l-[2H5]phenylalanine up to 200 min postexercise. The mRNA expression and protein expression of SNAT2 were both 1.4-fold higher ( P < 0.05) after nutrient intake compared with placebo at 200 min postexercise. Phosphorylated Akt, mammalian target of rapamycin (mTOR), and p70S6k were 1.7- to 3.6-fold higher ( P < 0.01) 80 min after the last sprint with nutrient ingestion as compared with placebo. In addition, FSR was higher ( P < 0.05) with nutrients when plasma phenylalanine (FSRplasma) was used as a precursor but not when intracellular phenylalanine (FSRmuscle) was used. Significant correlations were also found between FSRplasma on the one hand and plasma leucine and serum insulin on the other hand in the nutrient condition. The results show that nutrient ingestion induces the expression of the amino acid transporter SNAT2 stimulates Akt/mTOR signaling and most likely the rate of muscle protein synthesis following sprint exercise. NEW & NOTEWORTHY There is limited knowledge regarding the effect of nutrients on muscle protein synthesis following sprint as compared with resistance exercise. The results demonstrate that nutrient ingestion during repeated 30-s bouts of sprint exercise induces expression of the amino acid transporter SNAT2 and stimulates Akt/mTOR signaling and most likely the rate of muscle protein synthesis. Future studies to explore the chronic effects of nutritional ingestion during sprint exercise sessions on muscle mass accretion are warranted.


ChemMedChem ◽  
2016 ◽  
Vol 11 (4) ◽  
pp. 403-419 ◽  
Author(s):  
Isabell Haym ◽  
Tri H. V. Huynh ◽  
Stinne W. Hansen ◽  
Martin H. F. Pedersen ◽  
Josep A. Ruiz ◽  
...  

2018 ◽  
Vol 101 (2) ◽  
pp. 1687-1696 ◽  
Author(s):  
Ye Lin ◽  
Xiaoyu Duan ◽  
He Lv ◽  
Yang Yang ◽  
Ying Liu ◽  
...  

2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e15759-e15759
Author(s):  
Jiangdong Qiu ◽  
Mengyu Feng ◽  
Zhe Cao ◽  
Gang Yang ◽  
Yueze Liu ◽  
...  

e15759 Background: Reprogrammed energy metabolism has become the characteristic of cancer recently. Transporters act as amino acid sensors involved in mTOR recruitment and activation, which is crucial for the growth of both normal and tumor cells. L-type amino acid transporter 2 (LAT2), a Na+ -independent neutral amino acid transporter, is encoded by the SLC7A8 gene and responsible for transporting neutral amino acids, including a mTOR activator, glutamine. LAT2 was reported to be overexpressed in gemcitabine-resistant pancreatic cancer cells. However, the role of LAT2 in chemoresistance in pancreatic cancer remains unclear. Methods: The effects of LAT2 on biological behaviors of pancreatic cancer cells were analyzed. LAT2 and LDHB levels in tissues were detected, and the clinical value was evaluated. Results: We demonstrated that LAT2 played an oncogenic role and decreased the gemcitabine sensitivity of pancreatic cancer cells in vitro and in vivo. Survival analysis indicated that high expression of both LAT2 and LDHB was related to a poor prognosis in patients with pancreatic cancer. Furthermore, we found that LAT2 could promote proliferation, inhibit apoptosis, activate glycolysis and alter glutamine metabolism to activate mTOR in vitro and in vivo. Next, the combination of gemcitabine with an mTOR inhibitor (RAD001) could reverse the decrease in chemosensitivity caused by LAT2 overexpression in pancreatic cancer cells. Mechanistically, LAT2 promoted glycolysis and decreased gemcitabine sensitivity via regulating two glutamine-dependent positive feedback loops (the LAT2/p-mTORSer2448 loop and the glutamine/p-mTORSer2448/glutamine synthetase loop) in pancreatic cancer. Conclusions: Our data indicates that LAT2 functions as an oncogenic protein and could regulate glutamine-dependent mTOR activation to promote glycolysis and decrease gemcitabine sensitivity in pancreatic cancer. The LAT2-mTOR-LDHB pathway might be a promising therapeutic target in pancreatic cancer.


2013 ◽  
Vol 43 (11) ◽  
pp. 1211-1223 ◽  
Author(s):  
Hiroki Kondou ◽  
Masanobu Kawai ◽  
Kanako Tachikawa ◽  
Akihito Kimoto ◽  
Masayo Yamagata ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document