scholarly journals The effects of L-type amino acid transporter 1 on milk protein synthesis in mammary glands of dairy cows

2018 ◽  
Vol 101 (2) ◽  
pp. 1687-1696 ◽  
Author(s):  
Ye Lin ◽  
Xiaoyu Duan ◽  
He Lv ◽  
Yang Yang ◽  
Ying Liu ◽  
...  
Author(s):  
J.C. Robert ◽  
B.K. Sloan ◽  
C. Denis

Methionine has been shown to be the first-limiting amino acid for milk protein synthesis in lactating dairy cows fed maize silage-based diets complemented with soyabean meal (Sloanet al., 1992) (Pisulewskiet al., 1993). Thus, the aim of this trial was to investigate the hypothesis that methionine was first-limiting or if not at least colimiting with lysine for milk protein synthesis in dairy cows fed grass silage complemented with soyabean meal.8 muciparous and 4 primiparous dairy cows six weeks into lactation were randomly allocated to three 4x4 Latin squares (cows and heifers separately), each period containing 2 weeks. The four treatments consisted of Tl = Control ; T2 = 3.7 g methionine ; T3 = 7.4 g methionine ; T4 = 7.4 g methionine and 22.2 lysine . All figures relate to estimated intestinally available amino acids, g/day (Smartamine™technology Rhône-Poulenc Animal Nutrition). The basal ration was a second cut grass silage offeredad libitumplus 0.57 kg of hay plus an average 10.9 kg concentrate.


1993 ◽  
Author(s):  
Gabriella A. Varga ◽  
Amichai Arieli ◽  
Lawrence D. Muller ◽  
Haim Tagari ◽  
Israel Bruckental ◽  
...  

The effect of rumen available protein amino acids and carbohydrates on microbial protein synthesis, amino acid flow and performance of high yielding dairy cows was studied. A significant relationship between the effective degradabilities of OM in feedstuffs and the in vivo ruminal OM degradation of diets of dairy cows was found. The in situ method enabled the prediction of ruminal nutrients degradability response to processing of energy and nitragenous supplements. The AA profile of the rumen undegradable protein was modified by the processing method. In a continuous culture study total N and postruminal AA flows, and bacterial efficiency, is maximal at rumen degradable levels of 65% of the CP. Responses to rumen degradable non carbohydrate (NSC) were linear up to at least 27% of DM. Higher CP flow in the abomasum was found for cows fed high ruminally degradable OM and low ruminally degradable CP diet. It appeared that in dairy cows diets, the ratio of rumen degradable OM to rumenally degradable CP should be at least 5:1 in order to maximize postruminal CP flow. The efficiency of microbial CP synthesis was higher for diets supplemented with 33% of rumen undegradable protein, with greater amounts of bacterial AA reaching the abomasum. Increase in ruminal carbohydrate availability by using high moisture corn increased proportions of propionate, postruminal nutrients flow, postruminal starch digestibility, ruminal availability of NSC, uptake of energy substrates by the mammory gland. These modifications resulted with improvement in the utilization of nonessential AA for milk protein synthesis, in higher milk protein yield. Higher postruminal NSC digestibility and higher efficiency of milk protein production were recorded in cows fed extruded corn. Increasing feeding frequency increased flow of N from the rumen to the blood, reduced diurnal variation in ruminal and ammonia, and of plasma urea and improved postruminal NSC and CIP digestibility and total tract digestibilities. Milk and constituent yield increased with more frequent feeding. In a study performed in a commercial dairy herd, changes in energy and nitrogenous substrates level suggested that increasing feeding frequency may improve dietary nitrogen utilization and may shift metabolism toward more glucogenesis. It was concluded that efficiency of milk protein yield in high producing cows might be improved by an optimization of ruminal and post-ruminal supplies of energy and nitrogenous substrates. Such an optimization can be achieved by processing of energy and nitrogenous feedstuffs, and by increasing feeding frequency. In situ data may provide means for elucidation of the optimal processing conditions.


2017 ◽  
Vol 123 (6) ◽  
pp. 1501-1515 ◽  
Author(s):  
Håkan C. Rundqvist ◽  
Mona Esbjörnsson ◽  
Olav Rooyackers ◽  
Ted Österlund ◽  
Marcus Moberg ◽  
...  

Nutrient ingestion is known to increase the exercise-induced stimulation of muscle protein synthesis following resistance exercise. Less is known about the effect of nutrients on muscle protein synthesis following sprint exercise. At two occasions separated by 1 mo, 12 healthy subjects performed three 30-s sprints with 20-min rest between bouts. In randomized order, they consumed a drink with essential amino acids and maltodextrin (nutrient) or flavored water (placebo). Muscle biopsies were obtained 80 and 200 min after the last sprint, and blood samples were taken repeatedly during the experiment. Fractional synthetic rate (FSR) was measured by continuous infusion of l-[2H5]phenylalanine up to 200 min postexercise. The mRNA expression and protein expression of SNAT2 were both 1.4-fold higher ( P < 0.05) after nutrient intake compared with placebo at 200 min postexercise. Phosphorylated Akt, mammalian target of rapamycin (mTOR), and p70S6k were 1.7- to 3.6-fold higher ( P < 0.01) 80 min after the last sprint with nutrient ingestion as compared with placebo. In addition, FSR was higher ( P < 0.05) with nutrients when plasma phenylalanine (FSRplasma) was used as a precursor but not when intracellular phenylalanine (FSRmuscle) was used. Significant correlations were also found between FSRplasma on the one hand and plasma leucine and serum insulin on the other hand in the nutrient condition. The results show that nutrient ingestion induces the expression of the amino acid transporter SNAT2 stimulates Akt/mTOR signaling and most likely the rate of muscle protein synthesis following sprint exercise. NEW & NOTEWORTHY There is limited knowledge regarding the effect of nutrients on muscle protein synthesis following sprint as compared with resistance exercise. The results demonstrate that nutrient ingestion during repeated 30-s bouts of sprint exercise induces expression of the amino acid transporter SNAT2 and stimulates Akt/mTOR signaling and most likely the rate of muscle protein synthesis. Future studies to explore the chronic effects of nutritional ingestion during sprint exercise sessions on muscle mass accretion are warranted.


2017 ◽  
Vol 119 (2) ◽  
pp. 2094-2101 ◽  
Author(s):  
Naoya Nakai ◽  
Fuminori Kawano ◽  
Taro Murakami ◽  
Ken Nakata ◽  
Kazuhiko Higashida

2012 ◽  
Vol 95 (10) ◽  
pp. 5876-5887 ◽  
Author(s):  
M.N. Haque ◽  
H. Rulquin ◽  
A. Andrade ◽  
P. Faverdin ◽  
J.L. Peyraud ◽  
...  

2013 ◽  
Vol 43 (11) ◽  
pp. 1211-1223 ◽  
Author(s):  
Hiroki Kondou ◽  
Masanobu Kawai ◽  
Kanako Tachikawa ◽  
Akihito Kimoto ◽  
Masayo Yamagata ◽  
...  

1999 ◽  
Vol 1999 ◽  
pp. 87-87
Author(s):  
J.Alderson ◽  
B.J. Bequette ◽  
M.A. Lomax

The current pricing structure of the UK milk industry considers milk quality with higher premiums paid for milk protein content than for fat. Attempts to alter milk protein content by feeding extra protein(Bequette et al.,1998) or infusing amino acids(AA) in dairy cows has not always given consistent results. The present study is the first in a series where the objective is to use explants prepared from rat mammary glands to start identifying which AA may be (limiting) most important in regulating milk protein synthesis. Such information could be useful to identify specific AA which should be supplemented in the diet of the cow.


2022 ◽  
Vol 23 (2) ◽  
pp. 661
Author(s):  
Wei-Jing Xu ◽  
Kai Guo ◽  
Jia-Li Shi ◽  
Chang-Tong Guo ◽  
Jia-Le Xu ◽  
...  

The occurrence of stress is unavoidable in the process of livestock production, and prolonged stress will cause the decrease of livestock productivity. The stress response is mainly regulated by the hypothalamic-pituitary-adrenal axis (HPA axis), which produces a large amount of stress hormones, namely glucocorticoids (GCs), and generates a severe impact on the energy metabolism of the animal body. It is reported that m6A modification plays an important role in the regulation of stress response and also participates in the process of muscle growth and development. In this study, we explored the effect of GCs on the protein synthesis procession of porcine skeletal muscle cells (PSCs). We prove that dexamethasone affects the expression of SLC7A7, a main amino acid transporter for protein synthesis by affecting the level of m6A modification in PSCs. In addition, we find that SLC7A7 affects the level of PSC protein synthesis by regulating the conduction of the mTOR signaling pathway, which indicates that the reduction of SLC7A7 expression may alleviate the level of protein synthesis under stress conditions.


Sign in / Sign up

Export Citation Format

Share Document