14‐3‐3β isoform is specifically acetylated at Lys51 during differentiation to the osteogenic lineage

Author(s):  
Yesica R. Frontini‐López ◽  
Aldana D. Gojanovich ◽  
Samanta Del Veliz ◽  
Marina Uhart ◽  
Diego M. Bustos
Keyword(s):  

2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Julia C. Chen ◽  
Mardonn Chua ◽  
Raymond B. Bellon ◽  
Christopher R. Jacobs

Osteogenic lineage commitment is often evaluated by analyzing gene expression. However, many genes are transiently expressed during differentiation. The availability of genes for expression is influenced by epigenetic state, which affects the heterochromatin structure. DNA methylation, a form of epigenetic regulation, is stable and heritable. Therefore, analyzing methylation status may be less temporally dependent and more informative for evaluating lineage commitment. Here we analyzed the effect of mechanical stimulation on osteogenic differentiation by applying fluid shear stress for 24 hr to osteocytes and then applying the osteocyte-conditioned medium (CM) to progenitor cells. We analyzed gene expression and changes in DNA methylation after 24 hr of exposure to the CM using quantitative real-time polymerase chain reaction and bisulfite sequencing. With fluid shear stress stimulation, methylation decreased for both adipogenic and osteogenic markers, which typically increases availability of genes for expression. After only 24 hr of exposure to CM, we also observed increases in expression of later osteogenic markers that are typically observed to increase after seven days or more with biochemical induction. However, we observed a decrease or no change in early osteogenic markers and decreases in adipogenic gene expression. Treatment of a demethylating agent produced an increase in all genes. The results indicate that fluid shear stress stimulation rapidly promotes the availability of genes for expression, but also specifically increases gene expression of later osteogenic markers.



2010 ◽  
Vol 62 (2) ◽  
pp. 109-120 ◽  
Author(s):  
Felipe Garcia Quiroz ◽  
Olga M. Posada ◽  
Daniel Gallego-Perez ◽  
Natalia Higuita-Castro ◽  
Carlos Sarassa ◽  
...  


Endocrine ◽  
2021 ◽  
Author(s):  
Miriam E. A. Tschaffon ◽  
Stefan O. Reber ◽  
Astrid Schoppa ◽  
Sayantan Nandi ◽  
Ion C. Cirstea ◽  
...  

Abstract Purpose Endochondral ossification, which involves transdifferentiation of chondrocytes into osteoblasts, is an important process involved in the development and postnatal growth of most vertebrate bones as well as in bone fracture healing. To study the basic molecular mechanisms of this process, a robust and easy-to-use in vitro model is desirable. Therefore, we aimed to develop a standardized in vitro assay for the transdifferentiation of chondrogenic cells towards the osteogenic lineage. Methods Murine chondrogenic ATDC5 cells were differentiated into the chondrogenic lineage for seven days and subsequently differentiated towards the osteogenic direction. Gene expression analysis of pluripotency, as well as chondrogenic and osteogenic markers, cell–matrix staining, and immunofluorescent staining, were performed to assess the differentiation. In addition, the effects of Wnt3a and lipopolysaccharides (LPS) on the transdifferentiation were tested by their addition to the osteogenic differentiation medium. Results Following osteogenic differentiation, chondrogenically pe-differentiated cells displayed the expression of pluripotency and osteogenic marker genes as well as alkaline phosphatase activity and a mineralized matrix. Co-expression of Col2a1 and Col1a1 after one day of osteogenic differentiation indicated that osteogenic cells had differentiated from chondrogenic cells. Wnt3a increased and LPS decreased transdifferentiation towards the osteogenic lineage. Conclusion We successfully established a rapid, standardized in vitro assay for the transdifferentiation of chondrogenic cells into osteogenic cells, which is suitable for testing the effects of different compounds on this cellular process.



2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Qi Li ◽  
Shuang Pan ◽  
Smit J. Dangaria ◽  
Gokul Gopinathan ◽  
Antonia Kolokythas ◽  
...  

In the present study we have determined the suitability of platelet-rich fibrin (PRF) as a complex scaffold for periodontal tissue regeneration. Replacing PRF with its major component fibrin increased mineralization in alveolar bone progenitors when compared to periodontal progenitors, suggesting that fibrin played a substantial role in PRF-induced osteogenic lineage differentiation. Moreover, there was a 3.6-fold increase in the early osteoblast transcription factor RUNX2 and a 3.1-fold reduction of the mineralization inhibitor MGP as a result of PRF application in alveolar bone progenitors, a trend not observed in periodontal progenitors. Subcutaneous implantation studies revealed that PRF readily integrated with surrounding tissues and was partially replaced with collagen fibers 2 weeks after implantation. Finally, clinical pilot studies in human patients documented an approximately 5 mm elevation of alveolar bone height in tandem with oral mucosal wound healing. Together, these studies suggest that PRF enhances osteogenic lineage differentiation of alveolar bone progenitors more than of periodontal progenitors by augmenting osteoblast differentiation, RUNX2 expression, and mineralized nodule formation via its principal component fibrin. They also document that PRF functions as a complex regenerative scaffold promoting both tissue-specific alveolar bone augmentation and surrounding periodontal soft tissue regeneration via progenitor-specific mechanisms.



Biology Open ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. bio053280
Author(s):  
Sangeetha Kannan ◽  
Jyotirmoy Ghosh ◽  
Sujoy K. Dhara

ABSTRACTMultipotent porcine mesenchymal stem cells (pMSC) are invaluable for research and therapeutic use in regenerative medicine. Media used for derivation and expansion of pMSC may play an important role for the selection of MSC subpopulation at an early stage and thereby, the specific basal medium may also affect differentiation potential of these cells. The present study was undertaken to evaluate the effects of αMEM, aDMEM, M199, αMEM/M199, aDMEM/M199 and αMEM/aDMEM media on (1) porcine bone marrow MSC derivation; (2) expression of number of osteogenic markers (ALP, COL1A1, SPP1 and BGLAP) at 5th and 10th passage in pMSC before differentiation; and (3) differentiation of pMSC (at 5th passage) to osteogenic lineage. Morphological changes and matrix formation in osteogenic cells were evaluated by microscopic examination. Calcium deposits in osteocytes were confirmed by Alizarin Red S staining. Based on expression of different markers, it was evident that selection of bone marrow pMSC subpopulations was independent of basal media used. However, the differentiation of those pMSCs, specifically to osteogenic lineage, was dependent on the medium used for expansion of pMSC at the pre-differentiation stage. We demonstrated here that the pMSC grown in combined αMEM/aDMEM (1:1) medium expressed number of osteogenic markers and these pMSC underwent osteogenic differentiation most efficiently, in comparison to porcine mesenchymal stem cells grown in other media. In conclusion, osteogenic differentiation potential of pMSC maintained in αMEM/aDMEM medium was observed significantly higher compared to cells cultivated in other media and therefore, the combined medium αMEM/aDMEM (1:1) may preferentially be used for expansion of pMSC, if needed for osteogenic differentiation.



Biologicals ◽  
2016 ◽  
Vol 44 (6) ◽  
pp. 511-516 ◽  
Author(s):  
Parisa Sanaei-rad ◽  
Tahereh-sadat Jafarzadeh Kashi ◽  
Ehsan Seyedjafari ◽  
Masoud Soleimani


2005 ◽  
Vol 204 (1) ◽  
pp. 63-72 ◽  
Author(s):  
Faiza Afzal ◽  
Jitesh Pratap ◽  
Kosei Ito ◽  
Yoshiaki Ito ◽  
Janet L. Stein ◽  
...  
Keyword(s):  


2019 ◽  
Vol 90 ◽  
pp. 373-392 ◽  
Author(s):  
Parichart Naruphontjirakul ◽  
Olga Tsigkou ◽  
Siwei Li ◽  
Alexandra E. Porter ◽  
Julian R. Jones


Sign in / Sign up

Export Citation Format

Share Document