scholarly journals Muscle wasting and adipose tissue browning in infantile nephropathic cystinosis

2015 ◽  
Vol 7 (2) ◽  
pp. 152-164 ◽  
Author(s):  
Wai W. Cheung ◽  
Stephanie Cherqui ◽  
Wei Ding ◽  
Mary Esparza ◽  
Ping Zhou ◽  
...  
2019 ◽  
Vol 11 (1) ◽  
pp. 120-134 ◽  
Author(s):  
Wai W. Cheung ◽  
Sheng Hao ◽  
Zhen Wang ◽  
Wei Ding ◽  
Ronghao Zheng ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1954
Author(s):  
Alex Gonzalez ◽  
Wai W. Cheung ◽  
Elliot A. Perens ◽  
Eduardo A. Oliveira ◽  
Arieh Gertler ◽  
...  

Mice lacking the functional cystinosin gene (Ctns−/−), a model of infantile nephropathic cystinosis (INC), exhibit the cachexia phenotype with adipose tissue browning and muscle wasting. Elevated leptin signaling is an important cause of chronic kidney disease-associated cachexia. The pegylated leptin receptor antagonist (PLA) binds to but does not activate the leptin receptor. We tested the efficacy of this PLA in Ctns−/− mice. We treated 12-month-old Ctns−/− mice and control mice with PLA (7 mg/kg/day, IP) or saline as a vehicle for 28 days. PLA normalized food intake and weight gain, increased fat and lean mass, decreased metabolic rate and improved muscle function. It also attenuated perturbations of energy homeostasis in adipose tissue and muscle in Ctns−/− mice. PLA attenuated adipose tissue browning in Ctns−/− mice. PLA increased gastrocnemius weight and fiber size as well as attenuated muscle fat infiltration in Ctns−/− mice. This was accompanied by correcting the increased expression of muscle wasting signaling while promoting the decreased expression of myogenesis in gastrocnemius of Ctns−/− mice. PLA attenuated aberrant expressed muscle genes that have been associated with muscle atrophy, increased energy expenditure and lipolysis in Ctns−/− mice. Leptin antagonism may represent a viable therapeutic strategy for adipose tissue browning and muscle wasting in INC.


2021 ◽  
Author(s):  
Wai W Cheung ◽  
Sheng Hao ◽  
Ronghao Zheng ◽  
Zhen Wang ◽  
Alex Gonzalez ◽  
...  

ABSTRACTBackgroundCtns−/− mice, a mouse model of infantile nephropathic cystinosis, exhibit hypermetabolism with adipose tissue browning and profound muscle wasting. Inflammatory cytokines such as IL-1 trigger inflammatory cascades and play an important role in the pathogenesis of cachexia. Anakinra is an FDA-approved IL-1 receptor antagonist that blocks IL-1 signaling and may provide targeted novel therapy.MethodsCtns−/− mice were bred to Il6−/− and Il1β−/− mice. Ctns−/− mice and wild type control were treated with anakinra (2.5 mg.kg.day, IP) or saline as vehicle for 6 weeks. We quantitated total fat mass and studied expression of molecules regulating adipose tissue browning. We measured gastrocnemius weight, total lean mass content, muscle function (grip strength and rotarod activity), muscle fiber size, muscle fatty infiltration and expression of molecules regulating muscle metabolism. We also evaluated the effects of anakinra on the muscle transcriptome.ResultsIl-1β deficiency or treatment with anakinra normalized food intake and weight gain, fat and lean mass content, metabolic rate and muscle function in Ctns−/− mice. Anakinra also diminished molecular perturbations of energy homeostasis in adipose tissue and muscle, specifically, aberrant expression of beige adipose cell biomarkers (UCP-1, CD137, Tmem26 and Tbx1) and molecules implicated in adipocyte tissue browning (Cox2/Pgf2α, Tlr2, Myd88 and Traf6) in inguinal white adipose tissue in Ctns−/− mice. Moreover, anakinra normalized gastrocnemius weight and fiber size as well as attenuated muscle fat infiltration in Ctns−/− mice. This was accompanied by correction of the increased muscle wasting signaling pathways (increased protein content of ERK1/2, JNK, p38 MAPK and NF-κB p65 and gene expression of Atrogin-1 and Myostatin) and the decreased myogenesis process (decreased gene expression of MyoD and Myogenin) in gastrocnemius of Ctns−/− mice. Finally, anakinra normalized or attenuated 12 of those top 20 differentially expressed muscle genes in Ctns−/− mice.ConclusionsAnakinra attenuates adipose tissue browning and muscle wasting in Ctns−/− mice. IL-1 receptor blockade may represent a novel targeted treatment for cachexia in patients with infantile nephropathic cystinosis.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3382
Author(s):  
Robert H. Mak ◽  
Uwe Querfeld ◽  
Alex Gonzalez ◽  
Sujana Gunta ◽  
Wai W. Cheung

Patients with chronic kidney disease (CKD) often have low serum concentrations of 25(OH)D3 and 1,25(OH)2D3. We investigated the differential effects of 25(OH)D3 versus 1,25(OH)2D3 repletion in mice with surgically induced CKD. Intraperitoneal supplementation of 25(OH)D3 (75 μg/kg/day) or 1,25(OH)2D3 (60 ng/kg/day) for 6 weeks normalized serum 25(OH)D3 or 1,25(OH)2D3 concentrations in CKD mice, respectively. Repletion of 25(OH)D3 normalized appetite, significantly improved weight gain, increased fat and lean mass content and in vivo muscle function, as well as attenuated elevated resting metabolic rate relative to repletion of 1,25(OH)2D3 in CKD mice. Repletion of 25(OH)D3 in CKD mice attenuated adipose tissue browning as well as ameliorated perturbations of energy homeostasis in adipose tissue and skeletal muscle, whereas repletion of 1,25(OH)2D3 did not. Significant improvement of muscle fiber size and normalization of fat infiltration of gastrocnemius was apparent with repletion of 25(OH)D3 but not with 1,25(OH)2D3 in CKD mice. This was accompanied by attenuation of the aberrant gene expression of muscle mass regulatory signaling, molecular pathways related to muscle fibrosis as well as muscle expression profile associated with skeletal muscle wasting in CKD mice. Our findings provide evidence that repletion of 25(OH)D3 exerts metabolic advantages over repletion of 1,25(OH)2D3 by attenuating adipose tissue browning and muscle wasting in CKD mice.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1944-P
Author(s):  
AOYUAN CUI ◽  
WEITONG SU ◽  
YAQIAN XUE ◽  
ZHENGSHUAI LIU ◽  
FENGGUANG MA ◽  
...  

2021 ◽  
Author(s):  
Xiao Guo ◽  
Xuedan Cao ◽  
Xiugui Fang ◽  
Ailing Guo ◽  
Erhu Li

In this study, Ougan juice (OJ) and lactic acid bacteria fermented Ougan juice (FOJ) were investigated individually for their capability of preventing obesity in high-fat diet (HFD)-fed C57BL/6J mice. After...


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wenjun Hu ◽  
Hairong Xiong ◽  
Zeyuan Ru ◽  
Yan Zhao ◽  
Yali Zhou ◽  
...  

AbstractCancer cachexia is a metabolic disorder characterized by skeletal muscle wasting and white adipose tissue browning. Specific functions of several hormones, growth factors, and cytokines derived from tumors can trigger cachexia. Moreover, adipose tissue lipolysis might explain weight loss that occurs owing to cachexia. Extracellular vesicles (EVs) are involved in intercellular communication. However, whether EVs participate in lipolysis induced by cancer cachexia has not been thoroughly investigated. Using Lewis lung carcinoma (LLC) cell culture, we tested whether LLC cell-derived EVs can induce lipolysis in 3T3-L1 adipocytes. EVs derived from LLC cells were isolated and characterized biochemically and biophysically. Western blotting and glycerol assay were used to study lipolysis. LLC cell-derived EVs induced lipolysis in vivo and vitro. EVs fused directly with target 3T3-L1 adipocytes and transferred parathyroid hormone-related protein (PTHrP), activating the PKA signaling pathway in 3T3-L1 adipocytes. Blocking PTHrP activity in LLC-EVs using a neutralizing antibody and by knocking down PTHR expression prevented lipolysis in adipocytes. Inhibiting the PKA signaling pathway also prevents the lipolytic effects of EVs. In vivo, suppression of LLC-EVs release by knocking down Rab27A alleviated white adipose tissue browning and lipolysis. Our data showed that LLC cell-derived EVs induced adipocyte lipolysis via the extracellular PTHrP-mediated PKA pathway. Our data demonstrate that LLC-EVs induce lipolysis in vitro and vivo by delivering PTHrP, which interacts with PTHR. The lipolytic effect of LLC-EVs was abrogated by PTHR knockdown and treatment with a neutralizing anti-PTHrP antibody. Together, these data show that LLC-EV-induced lipolysis is mediated by extracellular PTHrP. These findings suggest a novel mechanism of lipid droplet loss and identify a potential therapeutic strategy for cancer cachexia.


Sign in / Sign up

Export Citation Format

Share Document