Comparisons of the low-resolution structures of ornithine decarboxylase by electron microscopy and X-ray crystallography: The utility of methylamine tungstate stain and butvar support film in the study of macromolecules by transmission electron microscopy

1991 ◽  
Vol 18 (2) ◽  
pp. 157-166 ◽  
Author(s):  
James K. Stoops ◽  
Cory Momany ◽  
Stephen R. Ernst ◽  
Robert M. Oliver ◽  
John P. Schroeter ◽  
...  
2017 ◽  
Vol 114 (42) ◽  
pp. 11139-11144 ◽  
Author(s):  
Nadav Elad ◽  
Giuliano Bellapadrona ◽  
Lothar Houben ◽  
Irit Sagi ◽  
Michael Elbaum

Metal ions play essential roles in many aspects of biological chemistry. Detecting their presence and location in proteins and cells is important for understanding biological function. Conventional structural methods such as X-ray crystallography and cryo-transmission electron microscopy can identify metal atoms on protein only if the protein structure is solved to atomic resolution. We demonstrate here the detection of isolated atoms of Zn and Fe on ferritin, using cryogenic annular dark-field scanning transmission electron microscopy (cryo-STEM) coupled with single-particle 3D reconstructions. Zn atoms are found in a pattern that matches precisely their location at the ferroxidase sites determined earlier by X-ray crystallography. By contrast, the Fe distribution is smeared along an arc corresponding to the proposed path from the ferroxidase sites to the mineral nucleation sites along the twofold axes. In this case the single-particle reconstruction is interpreted as a probability distribution function based on the average of individual locations. These results establish conditions for detection of isolated metal atoms in the broader context of electron cryo-microscopy and tomography.


2016 ◽  
Vol 72 (5) ◽  
pp. 603-615 ◽  
Author(s):  
Hilary P. Stevenson ◽  
Guowu Lin ◽  
Christopher O. Barnes ◽  
Ieva Sutkeviciute ◽  
Troy Krzysiak ◽  
...  

The crystallization of protein samples remains the most significant challenge in structure determination by X-ray crystallography. Here, the effectiveness of transmission electron microscopy (TEM) analysis to aid in the crystallization of biological macromolecules is demonstrated. It was found that the presence of well ordered lattices with higher order Bragg spots, revealed by Fourier analysis of TEM images, is a good predictor of diffraction-quality crystals. Moreover, the use of TEM allowed (i) comparison of lattice quality among crystals from different conditions in crystallization screens; (ii) the detection of crystal pathologies that could contribute to poor X-ray diffraction, including crystal lattice defects, anisotropic diffraction and crystal contamination by heavy protein aggregates and nanocrystal nuclei; (iii) the qualitative estimation of crystal solvent content to explore the effect of lattice dehydration on diffraction and (iv) the selection of high-quality crystal fragments for microseeding experiments to generate reproducibly larger sized crystals. Applications to X-ray free-electron laser (XFEL) and micro-electron diffraction (microED) experiments are also discussed.


Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.


Author(s):  
R. Gronsky

The phenomenon of clustering in Al-Ag alloys has been extensively studied since the early work of Guinierl, wherein the pre-precipitation state was characterized as an assembly of spherical, ordered, silver-rich G.P. zones. Subsequent x-ray and TEM investigations yielded results in general agreement with this model. However, serious discrepancies were later revealed by the detailed x-ray diffraction - based computer simulations of Gragg and Cohen, i.e., the silver-rich clusters were instead octahedral in shape and fully disordered, atleast below 170°C. The object of the present investigation is to examine directly the structural characteristics of G.P. zones in Al-Ag by high resolution transmission electron microscopy.


Author(s):  
Kenichi Takaya

Mast cell and basophil granules of the vertebrate contain heparin or related sulfated proteoglycans. Histamine is also present in mammalian mast cells and basophils. However, no histamine is detected in mast cell granules of the amphibian or fish, while it is shown in those of reptiles and birds A quantitative x-ray microanalysis of mast cell granules of fresh frozen dried ultrathin sections of the tongue of Wistar rats and tree frogs disclosed high concentrations of sulfur in rat mast cell granules and those of sulfur and magnesium in the tree frog granules. Their concentrations in tree frog mast cell granules were closely correlated (r=0.94).Fresh frozen dried ultrathin sections and fresh air-dried prints of the tree frog tongue and spleen and young red-eared turtle (ca. 6 g) spleen and heart blood were examined by a quantitative energy-dispersive x-ray microanalysis (X-650, Kevex-7000) for the element constituents of the granules of mast cells and basophils. The specimens were observed by transmission electron microscopy (TEM) (80-200 kV) and followed by scanning transmission electron microscopy (STEM) under an analytical electron microscope (X-650) at an acceleration voltage of 40 kV and a specimen current of 0.2 nA. A spot analysis was performed in a STEM mode for 100 s at a specimen current of 2 nA on the mast cell and basophil granules and other areas of the cells. Histamine was examined by the o-phthalaldehyde method.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 611
Author(s):  
Celia Marcos ◽  
María de Uribe-Zorita ◽  
Pedro Álvarez-Lloret ◽  
Alaa Adawy ◽  
Patricia Fernández ◽  
...  

Chert samples from different coastal and inland outcrops in the Eastern Asturias (Spain) were mineralogically investigated for the first time for archaeological purposes. X-ray diffraction, X-ray fluorescence, transmission electron microscopy, infrared and Raman spectroscopy and total organic carbon techniques were used. The low content of moganite, since its detection by X-ray diffraction is practically imperceptible, and the crystallite size (over 1000 Å) of the quartz in these cherts would be indicative of its maturity and could potentially be used for dating chert-tools recovered from archaeological sites. Also, this information can constitute essential data to differentiate the cherts and compare them with those used in archaeological tools. However, neither composition nor crystallite size would allow distinguishing between coastal and inland chert outcrops belonging to the same geological formations.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 727
Author(s):  
Shiyun Jin ◽  
Huifang Xu ◽  
Seungyeol Lee

The enigmatic Bøggild intergrowth in iridescent labradorite crystals was revisited in light of recent work on the incommensurately modulated structures in the intermediated plagioclase. Five igneous samples and one metamorphic labradorite sample with various compositions and lamellar thicknesses were studied in this paper. The lamellar textures were characterized with conventional transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). The compositions of individual lamellae were analyzed with high-resolution energy-dispersive X-ray spectroscopy (EDS) mapping and atom probe tomography (APT). The average structure states of the studied samples were also compared with single-crystal X-ray diffraction data (SC-XRD). The Na-rich lamellae have a composition of An44–48, and the Ca-rich lamellae range from An56 to An63. Significant differences between the lamellar compositions of different samples were observed. The compositions of the Bøggild intergrowth do not only depend on the bulk compositions, but also on the thermal history of the host rock. The implications on the subsolidus phase relationships of the plagioclase feldspar solid solution are discussed. The results cannot be explained by a regular symmetrical solvus such as the Bøggild gap, but they support an inclined two-phase region that closes at low temperature.


Sign in / Sign up

Export Citation Format

Share Document