scholarly journals Water quality performance of wetlands receiving nonpoint‐source nitrogen loads: Nitrate and total nitrogen removal efficiency and controlling factors

2020 ◽  
Vol 49 (3) ◽  
pp. 735-744
Author(s):  
William G. Crumpton ◽  
Greg A. Stenback ◽  
Stephen W. Fisher ◽  
Jana Z. Stenback ◽  
David I. S. Green
2004 ◽  
Vol 49 (11-12) ◽  
pp. 83-90 ◽  
Author(s):  
X.-D. Hao ◽  
M.C.M. van Loosdrecht

A model evaluating COD influence on a partial nitrification-Anammox biofilm process is integrated on the basis of heterotrophic growth as described in ASM3, combined with a previously published model for the CANON process. This integrated model can simulate the activities of heterotrophs and autotrophs involved in a biofilm, and interactions between COD oxidation, denitrification, nitrification and Anammox can be evaluated. Simulations indicate that COD in the influent has no important influence on the trends in the partial nitrification-Anammox biofilm process. Besides full COD removal, a total nitrogen removal efficiency of about 90% can be expected for stable biofilm systems. Furthermore, Anammox is a major contributor to the total nitrogen removal in stable biofilm systems and conventional denitrification only takes a share of <20% in the total nitrogen removal.


2014 ◽  
Vol 955-959 ◽  
pp. 2318-2321
Author(s):  
Dong Yuan

The objective of this work was to evaluate the performances of A lab-scale innovative sequencing batch biofilm reactor (SBBR) to treat domestic wastewater,in which a acryl cylinder (height 200 mm, diameter 70 mm) was equipped and many fiber threads were attached to the surface of the cylinder as the bacteria carrier. No time and volume for settling was required in this system. After one year’s operation, each parameter achieved the wastewater discharged criterion in 2 cycles (4 h). It was found that COD removal efficiency was up to 90% in 3 h, and ammonium nitrogen concentration approached the least value; total nitrogen removal efficiency reached 55%-71%. In this SBBR system simultaneous nitrification and denitrification was completed at the end of 2 cycles.


1993 ◽  
Vol 28 (7) ◽  
pp. 89-96
Author(s):  
Sang Eun Lee ◽  
Kwang Soo Kim ◽  
Kap Soo Kim ◽  
Chang Whoe Kim

Bench scale experiments and pilot plant studies (20 m3/day) on a side stream biological nutrient removal process (P/L process) were conducted for 3 years using primary effluent of two different sewage treatment plants as influent. The phosphorus removal efficiency was always higher than 90% resulting in an effluent T-P concentration lower than 0.5 mg/l while total nitrogen removal efficiency of the P/L process was less than 50%. However, total nitrogen removal efficiency could be improved to 88% with some modification of the process. The presence of nitrate nitrogen higher than 2 mg/l in the phosphorus stripping tank significantly reduced the phosphorus release in the stripping tank. Phosphorus content of the sludge in the aeration basin was about 30% higher than that of the phosphorus stripping tank, however, phosphorus content in the aeration basin could become higher by recycling portions of the phosphorus rich supernatant to the aeration basin to utilize the phosphorus uptake capacity of the sludge in aerobic conditions more efficiently and also to reduce the alum requirement.


1996 ◽  
Vol 34 (1-2) ◽  
pp. 459-466 ◽  
Author(s):  
Shigeo Fujii

The nitrogen removal efficiency of the step-feed anoxic-oxic activated sludge process, which has two anoxic tanks and two oxic tanks, was theoretically discussed on the basis of the stoichiometry of denitrification and nitrification reactions. As the first step, effluent NH4-N and NO3-N concentrations were formulated with four parameters; 1) a, equivalent ratio of alkalinity to ammonia in influent, 2) b, that of substrate to ammonia, 3) r, step ratio of influent to the second anoxic tank and 4) R, return (+ recycle) sludge ratio. This calculus was done for the possible sixteen (=24) cases which show different reaction patterns in four tanks, and 12 cases out of 16 were found to be available. The effects of step ratio, r were examined in its range of 0 - 1 at a fixed R value, and it was found that the increase of r alters the outcome in a different way depending on the ranges of a and b. Consequently, zoning of a-b coordinates was successfully made, and the optimal r value for maximum total nitrogen removal was obtained in each zone. In addition, the optimal volume allocation of the four tanks was discussed and the ratios were formulated for each zone.


2009 ◽  
Vol 59 (10) ◽  
pp. 1893-1899 ◽  
Author(s):  
W. L. Tsang ◽  
J. Wang ◽  
H. Lu ◽  
S. Li ◽  
G. H. Chen ◽  
...  

This study reports a lab-scale evaluation of a new biological nitrogen removal process for saline sewage treatment, namely a SANI process (Sulfate reduction, Autotrophic denitrification and Nitrification Integrated process). The experimental system consisted of an up-flow anaerobic bed for sulfate reduction, an anoxic filter for autotrophic denitrification using dissolved sulfide produced in the up-flow anaerobic bed and an aerobic filter for nitrification. The system successfully operated for more than 180 days with an overall organic carbon removal efficiency of 95%, in which, 82% removal was contributed by the up-flow anaerobic bed operating at a HRT of 6 h, and 13% removal by the anoxic filter. An average COD removed /sulfate removed ratio was found to be 0.76 gCOD/gSO4 or 2.28 COD/gSO4-S further confirming that the organic removal was mainly achieved by the sulfate reduction. In terms of nitrogen removal efficiency, the SANI system was found sensitive to the recirculation rate between the anoxic filter and the aerobic filter. A recirculation rate of 3Q was found to be optimal for achieving 74% of the total nitrogen removal. It was confirmed that the autotrophic denitrification was a major contributor to the total nitrogen removal in the SANI system. Sulfur balance analysis indicated that both the accumulation of elementary sulfur in the biomass and the loss of hydrogen sulfide were trivial. During the entire operation period (330 days to date), no sludge was wasted from any reactors in this system. This was further confirmed by the biomass balance simulation results that low biomass yields of sulfate reducing bacteria, autotrophic denitrifiers and nitrifiers contribute to the zero excess sludge discharge.


2014 ◽  
Vol 703 ◽  
pp. 171-174
Author(s):  
Bing Wang ◽  
Yi Xiao ◽  
Shou Hui Tong ◽  
Lan Fang ◽  
Da Hai You ◽  
...  

Improved step-feed de-nitrification progress combined with biological fluidized bed was introduced in this study. The progress had good performance and capacity of de-nitrification and organic matter. The experiment result showed that the de-nitrification efficiency of the improved biological fluidized bed with step-feed process was higher than the fluidized bed A/O process under the same water quality and the operating conditions. When the influent proportion of each segment was equal, the system showed good nitrogen removal efficiency with the change of influent C/N ratio, HRT and sludge return ratio. The removal rate of TN reached up to 88.2%. It showed that the simultaneous nitrification and de-nitrification phenomenon happened in the aerobic zone. The nitrogen removal mechanism was also studied.


RSC Advances ◽  
2015 ◽  
Vol 5 (73) ◽  
pp. 59326-59334 ◽  
Author(s):  
A. Chen ◽  
Y. Chen ◽  
C. Ding ◽  
H. Liang ◽  
B. Yang

The presence of 2 and 5 mg L−1of tetracycline decreased total nitrogen removal. Tetracycline induced EPS release and decreased its protective role on cells. Denitrifiers instead of nitrifiers were negatively affected by tetracycline.


Sign in / Sign up

Export Citation Format

Share Document