Suppression of astroglial scar formation and enhanced axonal regeneration associated with functional recovery in a spinal cord injury rat model by the cell cycle inhibitor olomoucine

2006 ◽  
Vol 84 (5) ◽  
pp. 1053-1063 ◽  
Author(s):  
Dai-Shi Tian ◽  
Zhi-Yuan Yu ◽  
Min-Jie Xie ◽  
Bi-Tao Bu ◽  
Otto W. Witte ◽  
...  
2015 ◽  
Vol 26 (2) ◽  
Author(s):  
Haruo Kanno ◽  
Damien D. Pearse ◽  
Hiroshi Ozawa ◽  
Eiji Itoi ◽  
Mary Bartlett Bunge

AbstractTransplantation of Schwann cells (SCs) is a promising therapeutic strategy for spinal cord repair. The introduction of SCs into the injured spinal cord has been shown to reduce tissue loss, promote axonal regeneration, and facilitate myelination of axons for improved sensorimotor function. The pathology of spinal cord injury (SCI) comprises multiple processes characterized by extensive cell death, development of a milieu inhibitory to growth, and glial scar formation, which together limits axonal regeneration. Many studies have suggested that significant functional recovery following SCI will not be possible with a single therapeutic strategy. The use of additional approaches with SC transplantation may be needed for successful axonal regeneration and sufficient functional recovery after SCI. An example of such a combination strategy with SC transplantation has been the complementary administration of neuroprotective agents/growth factors, which improves the effect of SCs after SCI. Suspension of SCs in bioactive matrices can also enhance transplanted SC survival and increase their capacity for supporting axonal regeneration in the injured spinal cord. Inhibition of glial scar formation produces a more permissive interface between the SC transplant and host spinal cord for axonal growth. Co-transplantation of SCs and other types of cells such as olfactory ensheathing cells, bone marrow mesenchymal stromal cells, and neural stem cells can be a more effective therapy than transplantation of SCs alone following SCI. This article reviews some of the evidence supporting the combination of SC transplantation with additional strategies for SCI repair and presents a prospectus for achieving better outcomes for persons with SCI.


2017 ◽  
Vol 159 (5) ◽  
pp. 947-957 ◽  
Author(s):  
Dong Kwang Seo ◽  
Jeong Hoon Kim ◽  
Joongkee Min ◽  
Hyung Ho Yoon ◽  
Eun-Sil Shin ◽  
...  

2020 ◽  
Vol 34 (5) ◽  
pp. 6984-6998
Author(s):  
Ningning Chen ◽  
Pengxiang Zhou ◽  
Xizhe Liu ◽  
Jiachun Li ◽  
Yong Wan ◽  
...  

2009 ◽  
pp. 110306202455053
Author(s):  
Hongsheng Liang ◽  
Peng Liang ◽  
Ye Xu ◽  
Jianing Wu ◽  
Tao Liang ◽  
...  

2019 ◽  
Vol 1724 ◽  
pp. 146424 ◽  
Author(s):  
Laura E. Sperling ◽  
Karina Pires Reis ◽  
Fabricio Nicola ◽  
Cristian Euzebio Teixeira ◽  
Gabriele Gulielmin Didó ◽  
...  

Biomedicines ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 258
Author(s):  
JeongHoon Kim ◽  
Hari Prasad Joshi ◽  
Kyoung-Tae Kim ◽  
Yi Young Kim ◽  
Keundong Yeo ◽  
...  

Neuroprotective measures by preventing secondary spinal cord injury (SCI) are one of the main strategies for repairing an injured spinal cord. Fasudil and menthol may be potent neuroprotective agents, which act by inhibiting a rho-associated protein kinase (ROCK) and suppressing the inflammatory response, respectively. We hypothesized that combined treatment of fasudil and menthol could improve functional recovery by decreasing inflammation, apoptosis, and glial scar formation. We tested our hypothesis by administering fasudil and menthol intraperitoneally (i.p.) to female Sprague Dawley rats after moderate static compression (35 g of impounder for 5 min) of T10 spinal cord. The rats were randomly divided into five experimental groups: (i) sham animals received laminectomy alone, (ii) injured (SCI) and untreated (saline 0.2 mL/day, i.p.) rats, (iii) injured (SCI) rats treated with fasudil (10 mg/kg/day, i.p.) for two weeks, (iv) injured (SCI) rats treated with menthol (10 mg/kg/day, i.p.) for twoweeks, (v) injured (SCI) rats treated with fasudil (5 mg/kg/day, i.p.) and menthol (10 mg/kg/day, i.p.) for two weeks. Compared to single treatment groups, combined treatment of fasudil and menthol demonstrated significant functional recovery and pain amelioration, which, thereby, significantly reduced inflammation, apoptosis, and glial/fibrotic scar formation. Therefore, combined treatment of fasudil and menthol may provide effective amelioration of spinal cord dysfunction by a synergistic effect of fasudil and menthol.


2009 ◽  
Vol 11 (4) ◽  
pp. 432-437 ◽  
Author(s):  
Gemma E. Rooney ◽  
Toshiki Endo ◽  
Syed Ameenuddin ◽  
Bingkun Chen ◽  
Sandeep Vaishya ◽  
...  

Object Glial scar and cystic formation greatly contribute to the inhibition of axonal regeneration after spinal cord injury (SCI). Attempts to promote axonal regeneration are extremely challenging in this type of hostile environment. The objective of this study was to examine the surgical methods that may be used to assess the factors that influence the level of scar and cystic formation in SCI. Methods In the first part of this study, a complete transection was performed at vertebral level T9–10 in adult female Sprague-Dawley rats. The dura mater was either left open (control group) or was closed using sutures or hyaluronic acid. In the second part of the study, complete or subpial transection was performed, with the same dural closure technique applied to both groups. Histological analysis of longitudinal sections of the spinal cord was performed, and the percentage of scar and cyst formation was determined. Results Dural closure using sutures resulted in significantly less glial scar formation (p = 0.0248), while incorporation of the subpial transection surgical technique was then shown to significantly decrease cyst formation (p < 0.0001). Conclusions In this study, the authors demonstrated the importance of the vasculature in cyst formation after spinal cord trauma and confirmed the importance of dural closure in reducing glial scar formation.


Sign in / Sign up

Export Citation Format

Share Document