Comprehensive analysis of the climate variability in the eastern Mediterranean. Part II: relationships between atmospheric circulation patterns and surface climatic elements

2007 ◽  
Vol 27 (10) ◽  
pp. 1351-1371 ◽  
Author(s):  
E. Kostopoulou ◽  
P. D. Jones
2022 ◽  
pp. 1-41

Abstract The interannual variation of springtime extreme precipitation (SEP) days in North China (NC) and their reliance on atmospheric circulation patterns are studied by using the continuous daily record of 396 rain gauges and the fifth generation of the European Centre for Medium-Range Weather Forecasts atmospheric reanalysis during 1979–2019. The SEP days are defined as the days when at least 10% of rain gauges in NC record daily precipitation no less than 10.5 mm. Results show that the number of SEP days shows large interannual variability but no significant trend in the study period. Using the objective classification method of the obliquely rotated principal analysis in T-mode, we classify the atmospheric circulation into five different patterns based on the geopotential height at 700 hPa. Three circulation patterns all have fronts and are associated with strong southerly wind, leading to 88% of SEP days in NC. The strong southerly wind may provide moisture and dynamic forcing for the frontal precipitation. The interannual variation of SEP days is related with the number of the three above-mentioned dominant circulation patterns. Further analysis shows that the West Pacific pattern could be one of the possible climate variability modes related to SEP days. This study reveals that the daily circulation pattern may be the linkage between SEP days and climate variability modes in NC.


2018 ◽  
Vol 89 (2) ◽  
pp. 425-431 ◽  
Author(s):  
Marieke Ahlborn ◽  
Moshe Armon ◽  
Yoav Ben Dor ◽  
Ina Neugebauer ◽  
Markus J. Schwab ◽  
...  

AbstractIdentifying climates favoring extreme weather phenomena is a primary aim of paleoclimate and paleohydrological research. Here, we present a well-dated, late Holocene Dead Sea sediment record of debris flows covering 3.3 to 1.9 cal ka BP. Twenty-three graded layers deposited in shallow waters near the western Dead Sea shore were identified by microfacies analysis. These layers represent distal subaquatic deposits of debris flows triggered by torrential rainstorms over the adjacent western Dead Sea escarpment. Modern debris flows on this escarpment are induced by rare rainstorms with intensities exceeding >30 mm h−1for at least one hour and originate primarily from the Active Red Sea Trough synoptic pattern. The observed late Holocene clustering of such debris flows during a regional drought indicates an increased influence of Active Red Sea Troughs resulting from a shift in synoptic atmospheric circulation patterns. This shift likely decreased the passages of eastern Mediterranean cyclones, leading to drier conditions, but favored rainstorms triggered by the Active Red Sea Trough. This is in accord with present-day meteorological data showing an increased frequency of torrential rainstorms in regions of drier climate. Hence, this study provides conclusive evidence for a shift in synoptic atmospheric circulation patterns during a late Holocene drought.


2014 ◽  
Vol 44 (8) ◽  
pp. 2139-2152 ◽  
Author(s):  
Antonio Espejo ◽  
Paula Camus ◽  
Iñigo J. Losada ◽  
Fernando J. Méndez

Abstract Traditional approaches for assessing wave climate variability have been broadly focused on aggregated or statistical parameters such as significant wave height, wave energy flux, or mean wave direction. These studies, although revealing the major general modes of wave climate variability and trends, do not take into consideration the complexity of the wind-wave fields. Because ocean waves are the response to both local and remote winds, analyzing the directional full spectra can shed light on atmospheric circulation not only over the immediate ocean region, but also over a broad basin scale. In this work, the authors use a pattern classification approach to explore wave climate variability in the frequency–direction domain. This approach identifies atmospheric circulation patterns of the sea level pressure from the 31-yr long Climate Forecast System Reanalysis (CFSR) and wave spectral patterns of two selected buoys in the North Atlantic, finding one-to-one relations between each synoptic pattern (circulation type) and each spectral wave energy distribution (spectral type). Even in the absence of long-wave records, this method allows for the reconstruction of long-term wave spectra to cover variability at several temporal scales: daily, monthly, seasonal, interannual, decadal, long-term trends, and future climate change projections.


2016 ◽  
Vol 133 ◽  
pp. 96-107 ◽  
Author(s):  
Fabian Schemmel ◽  
Eva M. Niedermeyer ◽  
Valérie F. Schwab ◽  
Gerd Gleixner ◽  
Jörg Pross ◽  
...  

Author(s):  
Mohammad Saeed Najafi ◽  
B. S. Sarraf ◽  
A. Zarrin ◽  
A. A. Rasouli

Sign in / Sign up

Export Citation Format

Share Document