Projected changes in European extreme precipitation indices on the basis of global and regional climate model ensembles

2013 ◽  
Vol 34 (4) ◽  
pp. 1208-1222 ◽  
Author(s):  
Ilari Lehtonen ◽  
Kimmo Ruosteenoja ◽  
Kirsti Jylhä
2021 ◽  
Vol 69 (2) ◽  
pp. 196-208
Author(s):  
Ranka Erić ◽  
Ratko Kadović ◽  
Vladimir Đurđević ◽  
Vesna Đukić

Abstract This paper presents the results of a study focused on the projected changes in extreme precipitation during the 21st century in Central Serbia. The changes are investigated on the basis of historical and modelled data sets of daily precipitation. The historical observation data were recorded at 18 synoptic weather stations in Central Serbia and modelled data were extracted from the regional climate model EBU-POM (Eta Belgrade University-Princeton Ocean Model) under the A1B scenario. The average number of days in a year with precipition ≥ 20, 30, 40 and 50 mm (R20, R30, R40 and R50), the share of daily precipitation above the 20, 30, 40 and 50 mm (P20, P30, P40, P50) in the total annual precipitation and the monthly distribution of these heavy daily precipitation are used as indices of changes in extreme precipitation. These indices, for the three periods 2011–2040, 2041–2070 and 2071–2100, are determined and compared with those obtained for the historical reference period 1961–1990. The results have shown that the main changes in extreme precipitation in Central Serbia will be in their spatial distribution, and the uncertainty of the occurrence of extreme events will decrease. In the future the increase will be more pronounced than the decrease of these indices. We strongly emphasize the benefit of this paper for both the prevention of natural disasters in the study area and for the improvement of the regional climate model.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 622
Author(s):  
Tugba Ozturk ◽  
F. Sibel Saygili-Araci ◽  
M. Levent Kurnaz

In this study, projected changes in climate extreme indices defined by the Expert Team on Climate Change Detection and Indices were investigated over Middle East and North Africa. Changes in the daily maximum and minimum temperature- and precipitation- based extreme indices were analyzed for the end of the 21st century compared to the reference period 1971–2000 using regional climate model simulations. Regional climate model, RegCM4.4 was used to downscale two different global climate model outputs to 50 km resolution under RCP4.5 and RCP8.5 scenarios. Results generally indicate an intensification of temperature- and precipitation- based extreme indices with increasing radiative forcing. In particular, an increase in annual minimum of daily minimum temperatures is more pronounced over the northern part of Mediterranean Basin and tropics. High increase in warm nights and warm spell duration all over the region with a pronounced increase in tropics are projected for the period of 2071–2100 together with decrease or no change in cold extremes. According to the results, a decrease in total wet-day precipitation and increase in dry spells are expected for the end of the century.


2020 ◽  
Author(s):  
Erika Toivonen ◽  
Danijel Belušić ◽  
Emma Dybro Thomassen ◽  
Peter Berg ◽  
Ole Bøssing Christensen ◽  
...  

<p>Extreme precipitation events have a major impact upon our society. Although many studies have indicated that it is likely that the frequency of such events will increase in a warmer climate, little has been done to assess changes in extreme precipitation at a sub-daily scale. Recently, there is more and more evidence that <span>high-resolution convection-permitting models </span><span>(CPMs)</span> (grid-mesh typically < 4 km) can represent especially short-duration precipitation extremes more accurately when compared with coarser-resolution <span>regional climate model</span><span>s </span><span>(RCMs)</span><span>.</span></p><p>This study investigates sub-daily and daily precipitation characteristics based on hourly <span>output data from the HARMONIE-Climate model </span>at 3-km and 12-km grid-mesh resolution over the Nordic region between 1998 and 2018. The RCM modelling chain uses the ERA-Interim reanalysis to drive a 12-km grid-mesh simulation which is further downscaled to 3-km grid-mesh resolution using a non-hydrostatic model set-up.</p><p>The statistical properties of the modeled extreme precipitation are compared to several sub-daily and daily observational products, including gridded and in-situ gauge data, from April to September. We investigate the skill of the model to represent different aspects of the frequency and intensity of extreme precipitation as well as intensity–duration–frequency (IDF) curves that are commonly used to investigate short duration extremes from an urban planning perspective. The high grid resolution combined with the 20-year-long simulation period allows for a robust assessment at a climatological time scale <span>and enables us to examine the added value of high-resolution </span><span>CPM</span><span> in reproducing precipitation extremes over the Nordic </span><span>region</span><span>. </span><span>Based on the tentative results, the high-resolution CPM can realistically capture the </span><span>characteristics </span><span>of precipitation extremes, </span><span>for instance, </span><span>in terms of improved diurnal cycle and maximum intensities of sub-daily precipitation.</span></p>


2020 ◽  
Author(s):  
Joris de Vente ◽  
Joris Eekhout

<p>Climate models project increased extreme precipitation for the coming decades, which may lead to higher soil erosion in many locations worldwide. The impact of climate change on soil erosion is most often assessed by applying a soil erosion model forced by bias-corrected climate model output. A literature review among more than 100 papers showed that many studies use different soil erosion models, bias-correction methods and climate model ensembles. In this study, we assessed how these differences affect the outcome of climate change impact assessments on soil erosion. The study was performed in two contrasting Mediterranean catchments (SE Spain), where climate change is projected to lead to a decrease in annual precipitation sum and an increase in extreme precipitation, based on the RCP8.5 emission scenario. First, we assessed the impact of soil erosion model selection using the three most widely used model concepts, i.e. a model forced by precipitation (RUSLE), a model forced by runoff (MUSLE), and a model forced by precipitation and runoff (MMF). Depending on the model, soil erosion in the study area is projected to decrease (RUSLE) or increase (MUSLE and MMF). The differences between the model projections are inherently a result of their model conceptualization, such as a decrease of soil loss due to decreased annual precipitation sum (RUSLE) and an increase of soil loss due to increased extreme precipitation and, consequently, increased runoff (MUSLE). An intermediate result is obtained with MMF, where a projected decrease in detachment by raindrop impact is counteracted by a projected increase in detachment by runoff. Second, we evaluated the implications of three bias‐correction methods, i.e. delta change, quantile mapping and scaled distribution mapping. Scaled distribution mapping best reproduces the raw climate change signal, in particular for extreme precipitation. Depending on the bias‐correction method, soil erosion is projected to decrease (delta change) or increase (quantile mapping and scaled distribution mapping). Finally, we assessed the effect of climate model ensembles on soil erosion projections. We showed that individual climate models may project opposite changes with respect to the ensemble average, hence, climate model ensembles are essential in soil erosion impact assessments to account for climate model uncertainty. We conclude that in climate change impact assessments it is important to select a soil erosion model that is forced by both precipitation and runoff, which under climate change may have a contrasting effect on soil erosion. Furthermore, the impact of climate change on soil erosion can only accurately be assessed with a bias‐correction method that best reproduces the projected climate change signal, in combination with a representative ensemble of climate models.</p>


Sign in / Sign up

Export Citation Format

Share Document