Changes in temperature and precipitation extreme indices over China: analysis of a high-resolution grid dataset

2015 ◽  
Vol 36 (3) ◽  
pp. 1051-1066 ◽  
Author(s):  
Botao Zhou ◽  
Ying Xu ◽  
Jia Wu ◽  
Siyan Dong ◽  
Ying Shi
Atmosphere ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 477 ◽  
Author(s):  
Kyu Kyu Sein ◽  
Amnat Chidthaisong ◽  
and Kyaw Lwin Oo

Projected increase in frequency and severity of extreme events are important threat brought by climate change. Thus, there is a need to understand the dynamics and magnitude of climate extreme at local and regional level. This study examines the patterns of annual trends and changes of extreme daily temperature and precipitation in Myanmar for the period of 1981 to 2015 using the RClimDex 1.1 software. The trends of maximum and minimum temperature show significant warming trends (p < 0.001) across Myanmar. From 2009 to 2015, the maximum temperature anomaly has continuously increased by 0.5 °C for all years except 2011. The larger rise in both maximum and minimum temperature observed after 2000 suggests that, overall, days and nights are becoming hotter for the entirety of Myanmar over this recent period. Furthermore, our works also show that the temperature extreme indices of warm days and warm nights have increased, whereas the frequency of cool days and cool nights have decreased. Our analysis also reveals that increasing trends in precipitation anomaly were not significant during 1981–2015. On the contrary, slight increasing trends towards wetter conditions were observed with a rate of 76.52 mm/decade during the study period. The other precipitation extreme indicators—namely, annual total precipitation (PRCPTOT), heavy precipitation days (R20mm), extreme wet days precipitation (R99p), and consecutive wet days (CWD)—are consistent with warming trends. Additionally, the relationship between inter-annual variability in the climate extremes indices and Oceanic Niño Index (ONI) patterns was also examined with a focus on the influence of the El Niño-Southern Oscillation (ENSO) phenomenon.


Data ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 41 ◽  
Author(s):  
Malcolm Mistry

Climate extreme indices (CEIs) are important metrics that not only assist in the analysis of regional and global extremes in meteorological events, but also aid climate modellers and policymakers in the assessment of sectoral impacts. Global high-spatial-resolution CEI datasets derived from quality-controlled historical observations, or reanalysis data products are scarce. This study introduces a new high-resolution global gridded dataset of CEIs based on sub-daily temperature and precipitation data from the Global Land Data Assimilation System (GLDAS). The dataset called “CEI_0p25_1970_2016” includes 71 annual (and in some cases monthly) CEIs at 0.25 ∘ × 0.25 ∘ gridded resolution, covering 47 years over the period 1970–2016. The data of individual indices are publicly available for download in the commonly used Network Common Data Form 4 (NetCDF4) format. Potential applications of CEI_0p25_1970_2016 presented here include the assessment of sectoral impacts (e.g., Agriculture, Health, Energy, and Hydrology), as well as the identification of hot spots (clusters) showing similar historical spatial patterns of high/low temperature and precipitation extremes. CEI_0p25_1970_2016 fills gaps in existing CEI datasets by encompassing not only more indices, but also by being the only comprehensive global gridded CEI data available at high spatial resolution.


Atmosphere ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 815 ◽  
Author(s):  
Chunyu Liu ◽  
Yungang Li ◽  
Xuan Ji ◽  
Xian Luo ◽  
Mengtao Zhu

Twenty-five climate indices based on daily maximum and minimum temperature and precipitation at 15 meteorological stations were examined to investigate changes in temperature and precipitation extremes over the Yarlung Tsangpo River Basin (1970–2017). The trend-free prewhitening (TFPW) Mann–Kendall test and Pettitt’s test were used to identify trends and abrupt changes in the time series, respectively. The results showed widespread significant changes in extreme temperature indices associated with warming, most of which experienced abrupt changes in the 1990s. Increases in daily minimum and maximum temperature were detected, and the magnitude of daily minimum temperature change was greater than that of the daily maximum temperature, revealing an obvious decrease in the diurnal temperature range. Warm days and nights became more frequent, whereas fewer cold days and nights occurred. The frequency of frost and icing days decreased, while summer days and growing season length increased. Moreover, cold spell length shortened, whereas warm spell length increased. Additionally, changes in the precipitation extreme indices exhibited much less spatial coherence than the temperature indices. Spatially, mixed patterns of stations with positive and negative trends were found, and few trends in the precipitation extreme indices at individual stations were statistically significant. Generally, precipitation extreme indices showed a tendency toward wetter conditions, and the contribution of extreme precipitation to total precipitation has increased. However, no significant regional trends and abrupt changes were detected in total precipitation or in the frequency and duration of precipitation extremes.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 622
Author(s):  
Tugba Ozturk ◽  
F. Sibel Saygili-Araci ◽  
M. Levent Kurnaz

In this study, projected changes in climate extreme indices defined by the Expert Team on Climate Change Detection and Indices were investigated over Middle East and North Africa. Changes in the daily maximum and minimum temperature- and precipitation- based extreme indices were analyzed for the end of the 21st century compared to the reference period 1971–2000 using regional climate model simulations. Regional climate model, RegCM4.4 was used to downscale two different global climate model outputs to 50 km resolution under RCP4.5 and RCP8.5 scenarios. Results generally indicate an intensification of temperature- and precipitation- based extreme indices with increasing radiative forcing. In particular, an increase in annual minimum of daily minimum temperatures is more pronounced over the northern part of Mediterranean Basin and tropics. High increase in warm nights and warm spell duration all over the region with a pronounced increase in tropics are projected for the period of 2071–2100 together with decrease or no change in cold extremes. According to the results, a decrease in total wet-day precipitation and increase in dry spells are expected for the end of the century.


2021 ◽  
Author(s):  
Thomas Noël ◽  
Harilaos Loukos ◽  
Dimitri Defrance

A high-resolution climate projections dataset is obtained by statistically downscaling climate projections from the CMIP6 experiment using the ERA5-Land reanalysis from the Copernicus Climate Change Service. This global dataset has a spatial resolution of 0.1°x 0.1°, comprises 5 climate models and includes two surface daily variables at monthly resolution: air temperature and precipitation. Two greenhouse gas emissions scenarios are available: one with mitigation policy (SSP126) and one without mitigation (SSP585). The downscaling method is a Quantile Mapping method (QM) called the Cumulative Distribution Function transform (CDF-t) method that was first used for wind values and is now referenced in dozens of peer-reviewed publications. The data processing includes quality control of metadata according to the climate modelling community standards and value checking for outlier detection.


Atmosphere ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 240 ◽  
Author(s):  
Hanjiang Nie ◽  
Tianling Qin ◽  
Hanbo Yang ◽  
Juan Chen ◽  
Shan He ◽  
...  

In this study, the major winter wheat planting area of China is selected as the study area, with the time scale of the growth period of winter wheat (a total of 56 growth periods during October 1961 to May 2016). The significance, stability, magnitude of the trend and the average trend of the study area with eight temperature indices and seven precipitation indices of 453 meteorological stations are tested by Mann–Kendall method and Sen’s nonparametric method. The following observation can be made: (1) the cold extreme indices show strong and stable downward trend in most of the stations in the study area, while the hot extreme indices show a strong and stable upward trend, especially in the northern winter wheat planting area and the north of the southern winter wheat planting area. (2) The trends of extreme precipitation indices in most of the sites in the study area are insignificant and unstable. Only in R20mm, a significant and stable decreasing trend is shown in some stations, which is mainly located in the northern winter wheat planting area and part of the central and western regions in the study area. The results in some ways could enrich the references for understanding the climate change in the growth period of winter wheat in the region and help to formulate a better agronomic management practice of winter wheat.


2011 ◽  
Vol 6 (1) ◽  
pp. 39-43 ◽  
Author(s):  
B. Chimani ◽  
R. Böhm ◽  
C. Matulla ◽  
M. Ganekind

Abstract. Solid precipitation (mainly snow, but snow and ice pellets or hail as well), is an important parameter for climate studies. But as this parameter usually is not available operationally before the second part of the 20th century and nowadays is not reported by automatic stations, information usable for long term climate studies is rare. Therefore a proxy for the fraction of solid precipitation based on a nonlinear relationship between the percentage of solid precipitation and monthly mean temperature was developed for the Greater Alpine Region of Europe and applied to the existing longterm high resolution temperature and precipitation grids (5 arcmin). In this paper the method is introduced and some examples of the resulting datasets available at monthly resolution for 1800–2003 are given.


Sign in / Sign up

Export Citation Format

Share Document