scholarly journals Development of a longterm dataset of solid/liquid precipitation

2011 ◽  
Vol 6 (1) ◽  
pp. 39-43 ◽  
Author(s):  
B. Chimani ◽  
R. Böhm ◽  
C. Matulla ◽  
M. Ganekind

Abstract. Solid precipitation (mainly snow, but snow and ice pellets or hail as well), is an important parameter for climate studies. But as this parameter usually is not available operationally before the second part of the 20th century and nowadays is not reported by automatic stations, information usable for long term climate studies is rare. Therefore a proxy for the fraction of solid precipitation based on a nonlinear relationship between the percentage of solid precipitation and monthly mean temperature was developed for the Greater Alpine Region of Europe and applied to the existing longterm high resolution temperature and precipitation grids (5 arcmin). In this paper the method is introduced and some examples of the resulting datasets available at monthly resolution for 1800–2003 are given.

2009 ◽  
Vol 5 (1) ◽  
pp. 535-555 ◽  
Author(s):  
P. D. Jones ◽  
D. H. Lister

Abstract. The atmospheric circulation clearly has an important influence on variations in surface temperature and precipitation. In this study we illustrate the spatial patterns of variation that occur for the principal circulation patterns across Europe in the standard four seasons. We use an existing classification scheme of surface pressure patterns, with the aim of considering whether the patterns of influence of specific weather types have changed over the course of the 20th century. We consider whether the long-term warming across Europe is associated with more favourable weather types or related to warming within some of the weather types. The results indicate that the latter is occurring, but not all circulation types show warming. The study also illustrates that certain circulation types can lead to marked differences in temperature and/or precipitation for relatively closely positioned sites when the sites are located in areas of high relief or near coasts.


2009 ◽  
Vol 5 (2) ◽  
pp. 259-267 ◽  
Author(s):  
P. D. Jones ◽  
D. H. Lister

Abstract. The atmospheric circulation clearly has an important influence on variations in surface temperature and precipitation. In this study we illustrate the spatial patterns of variation that occur for the principal circulation patterns across Europe in the standard four seasons. We use an existing classification scheme of surface pressure patterns, with the aim of considering whether the patterns of influence of specific weather types have changed over the course of the 20th century. We consider whether the long-term warming across Europe is associated with more favourable weather types or related to warming within some of the weather types. The results indicate that the latter is occurring, but not all circulation types show warming. The study also illustrates that certain circulation types can lead to marked differences in temperature and/or precipitation for relatively closely positioned sites when the sites are located in areas of high relief or near coasts.


2018 ◽  
Author(s):  
Dimitri Osmont ◽  
Isabel A. Wendl ◽  
Loïc Schmidely ◽  
Michael Sigl ◽  
Carmen P. Vega ◽  
...  

Abstract. Produced by the incomplete combustion of fossil fuel and biomass, black carbon (BC) contributes to Arctic warming by reducing snow albedo and thus triggering a snow-albedo feedback leading to increased snow melting. Therefore, it is of high importance to assess past BC emissions to better understand and constrain their role. However, only few long-term BC records are available from the Arctic, mainly originating from Greenland ice cores. Here, we present the first long-term and high-resolution refractory black carbon (rBC) record from Svalbard, derived from the analysis of two ice cores drilled at the Lomonosovfonna ice field in 2009 (LF-09) and 2011 (LF-11) and covering 800 years of atmospheric emissions. Our results show that rBC concentrations strongly increased from 1860 on due to anthropogenic emissions and reached two maxima, at the end of the 19th century and in the middle of the 20th century. No increase in rBC concentrations during the last decades was observed, which is corroborated by atmospheric measurements elsewhere in the Arctic but contradicts a previous study from another ice core from Svalbard. While melting may affect BC concentrations during periods of high temperatures, rBC concentrations remain well-preserved prior to the 20th century due to lower temperatures inducing little melt. Therefore, the preindustrial rBC record (before 1800), along with ammonium (NH4+), formate (HCOO−) and specific organic markers (vanillic acid (VA) and p-hydroxybenzoic acid (p-HBA)), was used as a proxy for biomass burning. Despite numerous single events, no long-term trend was observed over the time period 1222–1800 for rBC and NH4+. In contrast, formate, VA and p-HBA experience multi-decadal peaks reflecting periods of enhanced biomass burning. Most of the background variations and single peak events are corroborated by other ice-core records from Greenland and Siberia. We suggest that the paleofire record from the LF ice core primarily reflects biomass burning episodes from Northern Eurasia, induced by decadal-scale climatic variations.


2017 ◽  
Vol 133 (3-4) ◽  
pp. 829-849 ◽  
Author(s):  
Thompson Annor ◽  
Benjamin Lamptey ◽  
Sven Wagner ◽  
Philip Oguntunde ◽  
Joël Arnault ◽  
...  

2010 ◽  
Vol 3 (1) ◽  
pp. 65-86 ◽  
Author(s):  
Ewa Łupikasza

Abstract The paper discusses the impact of the atmospheric circulation on the long-term variability of liquid, mixed and solid precipitation. The three precipitation forms were characterised by their totals, the number of days when they prevailed, and the contribution of each to the overall precipitation totals. Trends, as a background to further analysis, were calculated with regard to each characteristic of each precipitation form. The most significant increases were recorded in the contribution of liquid precipitation to the overall precipitation totals in September and in the mixed precipitation totals in December and November. Arctic Oscillation (AO) was found to have only a minor influence on the long-term variability of precipitation characteristics. The AO phase could to some degree account for the observed variation in the number of days with liquid precipitation. On the other hand, the direction of the local advection could account for considerably more of this variability and also the variability in liquid precipitation totals.


2018 ◽  
Vol 18 (17) ◽  
pp. 12777-12795 ◽  
Author(s):  
Dimitri Osmont ◽  
Isabel A. Wendl ◽  
Loïc Schmidely ◽  
Michael Sigl ◽  
Carmen P. Vega ◽  
...  

Abstract. Produced by the incomplete combustion of fossil fuel and biomass, black carbon (BC) contributes to Arctic warming by reducing snow albedo and thus triggering a snow-albedo feedback leading to increased snowmelt. Therefore, it is of high importance to assess past BC emissions to better understand and constrain their role. However, only a few long-term BC records are available from the Arctic, mainly originating from Greenland ice cores. Here, we present the first long-term and high-resolution refractory black carbon (rBC) record from Svalbard, derived from the analysis of two ice cores drilled at the Lomonosovfonna ice field in 2009 (LF-09) and 2011 (LF-11) and covering 800 years of atmospheric emissions. Our results show that rBC concentrations strongly increased from 1860 on due to anthropogenic emissions and reached two maxima, at the end of the 19th century and in the middle of the 20th century. No increase in rBC concentrations during the last decades was observed, which is corroborated by atmospheric measurements elsewhere in the Arctic but contradicts a previous study from another ice core from Svalbard. While melting may affect BC concentrations during periods of high temperatures, rBC concentrations remain well preserved prior to the 20th century due to lower temperatures inducing little melt. Therefore, the preindustrial rBC record (before 1800), along with ammonium (NH4+), formate (HCOO−) and specific organic markers (vanillic acid, VA, and p-hydroxybenzoic acid, p-HBA), was used as a proxy for biomass burning. Despite numerous single events, no long-term trend was observed over the time period 1222–1800 for rBC and NH4+. In contrast, formate, VA, and p-HBA experience multi-decadal peaks reflecting periods of enhanced biomass burning. Most of the background variations and single peak events are corroborated by other ice core records from Greenland and Siberia. We suggest that the paleofire record from the LF ice core primarily reflects biomass burning episodes from northern Eurasia, induced by decadal-scale climatic variations.


2021 ◽  
Vol 13 (4) ◽  
pp. 602
Author(s):  
Fei Feng ◽  
Kaicun Wang

Surface solar radiation (Rs) is essential to climate studies. Thanks to long-term records from the Advanced Very High-Resolution Radiometers (AVHRR), the recent release of International Satellite Cloud Climatology Project (ISCCP) HXG cloud products provide a promising opportunity for building long-term Rs data with high resolutions (3 h and 10 km). In this study, we compare three satellite Rs products based on AVHRR cloud products over China from 1983 to 2017 with direct observations of Rs and sunshine duration (SunDu)-derived Rs. The results show that SunDu-derived Rs have higher accuracy than the direct observed Rs at time scales of a month or longer by comparing with the satellite Rs products. SunDu-derived Rs is available from the 1960s at more than 2000 stations over China, which provides reliable decadal estimations of Rs. However, the three AVHRR-based satellite Rs products have significant biases in quantifying the trend of Rs from 1983 to 2016 (−4.28 W/m2/decade to 2.56 W/m2/decade) due to inhomogeneity in satellite cloud products and the lack of information on atmospheric aerosol optical depth. To adjust the inhomogeneity of the satellite Rs products, we propose a geographically weighted regression fusion method (HGWR) to merge ISCCP-HXG Rs with SunDu-derived Rs. The merged Rs product over China from 1983 to 2017 with a spatial resolution of 10 km produces nearly the same trend as that of the SunDu-derived Rs. This study makes a first attempt to adjust the inhomogeneity of satellite Rs products and provides the merged high-resolution Rs product from 1983 to 2017 over China, which can be downloaded freely.


Sign in / Sign up

Export Citation Format

Share Document