Soil-quality-index model for assessing the impact of groundwater on soil in an intensively farmed coastal area of E China

2013 ◽  
Vol 177 (3) ◽  
pp. 330-342 ◽  
Author(s):  
Rong-Jiang Yao ◽  
Jing-Song Yang ◽  
Peng Gao ◽  
Jian-Bin Zhang ◽  
Wen-Hui Jin ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhe Xu ◽  
Wenbao Mi ◽  
Nan Mi ◽  
Xingang Fan ◽  
Yao Zhou ◽  
...  

AbstractDesert steppe soil security issues have been the focus of attention. Therefore, to understand the impact of industrial activities on the soil quality of desert grasslands, this experiment investigated the Gaoshawo Industrial Concentration Zone in Yanchi County. Based on the distance and direction from the industrial park, sample plots were established at intervals of 1–2 km. A total of 82 surface soil samples (0–20 cm) representing different pollution sources were collected. The samples were analysed for pH, total nitrogen, total phosphorus, available phosphorus, available potassium, organic matter, copper (Cu), cadmium (Cd), chromium (Cr), lead (Pb), and zinc (Zn). The desert steppe soil quality was analysed based on the integrated fertility index (IFI) and the Nemerow pollution index (PN), followed by the calculation of the comprehensive soil quality index (SQI), which considers the most suitable soil quality indicators through a geostatistical model. The results showed that the IFI was 0.393, indicating that the soil fertility was relatively poor. Excluding the available potassium, the nugget coefficients of the fertility indicators were less than 25% and showed strong spatial autocorrelation. The average values of Cu, Cd, Cr, Pb and Zn were 21.64 ± 3.26, 0.18 ± 0.02, 44.99 ± 21.23, 87.18 ± 25.84, and 86.63 ± 24.98 mg·kg−1, respectively; the nugget coefficients of Cr, Pb and Zn were 30.79–47.35%. Pb was the main element causing heavy metal pollution in the study area. Higher PN values were concentrated north of the highway in the study area, resulting in lower soil quality in the northern region and a trend of decreasing soil quality from south to north. The results of this research showed that the average SQI was 0.351 and the soil quality was extremely low. Thus, industrial activities and transportation activities in the Gaoshawo Industrial Zone significantly impact the desert steppe soil quality index.


2016 ◽  
Vol 7 (1) ◽  
pp. 1 ◽  
Author(s):  
Anggoro Prihutomo ◽  
Warih Hardanu ◽  
Atri Triana Kartikasari

<p>The impact of aquaculture activities has led to environmental degradation, especially ponds bottom soil quality. The purpose of this study was to assess the status of the ponds bottom soil quality in different aquaculture systems (traditional and intensive) in BLUPPB Karawang region in a flexible value of soil quality index (SQI). Twenty ponds consisting of 5 traditional of milkfish (<em>Chanos chanos</em>) juvenile rearing ponds and 5 traditional polyculture ponds, 5 intensive of <em>Litopenaeus </em><em>va</em><em>n</em><em>namei</em> shrimp ponds lined with plastic mulch and 5 intensive <em>L. vannamei </em>shrimp earthen ponds. Variables of soil quality parameters examined include physical, chemical and biological of pond bottom soil. Sediment ponds with a depth of 5-10 cm were taken for analysis. Data statistically analyzed using Anova, continued with pos hoc test HSD Tukey. The results showed the ponds soil quality (SQI) of BLUPPB Karawang area has an average of 0.38 ± 0.02 or included in low criteria. Aquaculture systems were not significant (p&gt; 5%) to the general status of ponds soil quality. Aquaculture systems (intensive and traditional) only gave a significant different (p&lt;5%) to the parameter of soil bulk density, c-organic, total N, C:N ratio, total S, total P and soil respiration. Stability of the ponds bottom soil chemical compositions over time make level of intensity does not significantly affect, beside routine sediment removal at the end of cycle in intensive culture.</p>


2021 ◽  
Vol 13 (4) ◽  
pp. 1952
Author(s):  
Salar Rezapour ◽  
Amin Nouri ◽  
Hawzhin M. Jalil ◽  
Shawn A. Hawkins ◽  
Scott B. Lukas

Dwindling water resources have drawn global attention to the reuse of treated wastewater (TWW) for irrigation. However, the impact of continuous TWW applications on soil quality and the proper quantification and monitoring frameworks have not been well-understood. This study aims to provides an insight into the impact of flood irrigation of urban TWW on soil nutritional-chemical attributes and the potential application of multiple soil quality indices for a corn cropping system. To achieve that goal, we pursued the Total Data Set (TDS) and Minimum Data Set (MDS) approaches, as well as the Integrated Quality Index (IQI) and Nemoro Quality Index (NQI) models. A total of 17 soil nutritional-chemical indicators (0–50 cm depths) were determined for the soils irrigated with TWW (five sites) and well water (one site as control) in West Azerbaijan province in northwestern Iran. Results revealed a significant difference in the majority of soil nutritional-chemical attributes, IQI-TDS, NQI-TDS, IQI-MDS, NQI-MDS, and corn yield between the TWW-irrigated and well-irrigated soils. Irrigation with TWW resulted in a significant increase in the amount of organic matter and cation exchange capacity by 9–17% and 17–26%, respectively, macronutrients (N, P, K, Ca, and Mg) by 22–164%, and the majority of trace metals (Fe, Mn, Zn, and Cu) by 17–175%, suggesting an improvement in soil nutrients and an increase in productivity. Comparing to the soil in control sites, the TWW irrigation caused a notable increase in the values of IQI-TDS, NQI-TDS, IQI-MDS, and NQI-MDS models ranging 14.6–29.5%, 19.1–25.5%, 21.7–33.3%, and 18.4–23.7%, respectively. This implies that soil quality was ameliorated to a significant extent with TWW irrigation. These improvements resulted in a remarkable increase in corn yield ranging from 12.5% to 28.1%. The regression equations revealed that up to 78%, 47%, 72%, and 36% of the variance in the IQI-TDS, NQI-TDS, IQI-MDS, and NQI-MDS models, respectively, could be captured by corn yield. The results of the regression and correlation analyses showed that the IQI-MDS model was more accurate than the other models in assessing soil quality and predicting crop yield. These findings may be an effective and practical tool for policy making, implementation, and management of soil irrigated with TWW.


2020 ◽  
Vol 11 (1) ◽  
pp. 1
Author(s):  
Achmad Rachman ◽  
Sutono Sutono ◽  
Irawan Irawan ◽  
I Wayan Suastika

<p><strong>Abstrak.</strong> Lahan dalam kawasan tambang-tambang mineral mengalami perubahan sifat fisik, kimia, dan biologi tanah serta lansekap yang sangat signifikan sebagai akibat dari berbagai aktifitas penambangan seperti land clearing, pembangunan fasilitas pendukung kegiatan penambangan, lalu lintas kendaraan berat, penggalian, penimbunan bahan galian, pengolahan hasil tambang atau bahan mineral, dan lainnya. Sangat penting untuk mengembalikan kualitas tanah seperti kondisi sebelum kegiatan penambangan sehingga lahan dapat difungsikan kembali untuk pertanian. Makalah ini membahas metode penilaian indeks kualitas tanah sehingga dapat dievaluasi dampak berbagai perlakuan reklamasi. Sejumlah hasil penelitian menunjukkan bahwa penggunaan indeks kualitas tanah untuk tujuan tersebut memberikan hasil yang baik, mudah dilaksanakan dan mudah dipahami oleh pengguna. Pemilihan indikator kunci (minimun data set) dan nilai ambang batasnya, pada batas mana tanah dapat berfungsi optimal, sangat menentukan akurasi penetapan indeks kualitas tanah. Penskoran dan pembobotan dilakukan terhadap setiap individu indikator kunci yang kemudian diintegrasikan untuk mendapatkan satu nilai indeks kualitas tanah. Indikator kunci untuk mengevaluasi kualitas tanah pada lahan bekas tambang disarankan sebagai berikut: kandungan bahan organik tanah (SOM), reaksi tanah (pH), berat isi tanah (BD), kapasitas air tersedia (AWC), agregasi (WSA), dan respirasi tanah, namun dapat ditambahkan indikator lain sesuai tujuan evaluasi dan kondisi geografis lahan yang akan dievaluasi. Penilaian kualitas tanah dapat juga dilakukan menggunakan metode Scorecard. Evaluasi kualitas tanah pasca penambangan sebaiknya dilakukan sebelum pelaksanaan reklamasi untuk menentukan prioritas sifat-sifat tanah yang perlu perhatian lebih sehingga perlakuan reklamasi lebih terarah dan terukur dan selama pelaksanaan reklamasi untuk mengetahui arah perubahan yang terjadi.</p><p><em><strong>Abstract.</strong> Land in the mining areas undergo changes in soil physical, chemical, and biological properties as well as landscape as a result of various mining activities namely land clearing, construction of facilities to support the operations, movement of vehicles, excavation, storage of overburden dump materials backfilling of excavated material, and mineral mined processing. It is essential to restore soil quality similar to the condition before mining operation so that it can be utilized for agriculture purposes. This paper discusses method for assessing soil quality index to allow evaluation of the impact of different reclamation treatments. Studies indicated that the use of soil quality index gave good result, easy to perform, and easy to understand by the end user. Selection of key indicators (minimum data set) and its threshold values, in which soil is functioning optimally, is essential for the accuracy of soil quality index determination. Scoring and weighing of the individual soil indicator was performed before integrating all key indicators to obtain a soil quality index. Key indicators for evaluating soil quality of reclaimed mine soils is recommended to include soil organic matter (SOM), soil reaction (pH), bulk density (BD), available water capacity (AWC), water stable aggregate (WSA), and soil respiration, however, other indicators could be added depending upon the goal of assessment and geographical condition of land that is subject to evaluation. Qualitative assessment of soil quality can also be conducted using scorecard method. Evaluation of post-mining soil quality should be conducted before any reclamation activities to priorities soil properties that need more attention, so that reclamation treatments will be more focus and measurable and on on-going reclamation to monitor the trend of change.</em></p>


2004 ◽  
Vol 4 (3) ◽  
pp. 201-204 ◽  
Author(s):  
Giancarlo Barbiroli ◽  
Giovanni Casalicchio ◽  
Andrea Raggi

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1426
Author(s):  
Ahmed S. Abuzaid ◽  
Mohamed A. E. AbdelRahman ◽  
Mohamed E. Fadl ◽  
Antonio Scopa

Modelling land degradation vulnerability (LDV) in the newly-reclaimed desert oases is a key factor for sustainable agricultural production. In the present work, a trial for usingremote sensing data, GIS tools, and Analytic Hierarchy Process (AHP) was conducted for modeling and evaluating LDV. The model was then applied within 144,566 ha in Farafra, an inland hyper-arid Western Desert Oases in Egypt. Data collected from climate conditions, geological maps, remote sensing imageries, field observations, and laboratory analyses were conducted and subjected to AHP to develop six indices. They included geology index (GI), topographic quality index (TQI), physical soil quality index (PSQI), chemical soil quality index (CSQI), wind erosion quality index (WEQI), and vegetation quality index (VQI). Weights derived from the AHP showed that the effective drivers of LDV in the studied area were as follows: CSQI (0.30) > PSQI (0.29) > VQI (0.17) > TQI (0.12) > GI (0.07) > WEQI (0.05). The LDV map indicated that nearly 85% of the total area was prone to moderate degradation risks, 11% was prone to high risks, while less than 1% was prone to low risks. The consistency ratio (CR) for all studied parameters and indices were less than 0.1, demonstrating the high accuracy of the AHP. The results of the cross-validation demonstrated that the performance of ordinary kriging models (spherical, exponential, and Gaussian) was suitable and reliable for predicting and mapping soil properties. Integrated use of remote sensing data, GIS, and AHP would provide an effective methodology for predicting LDV in desert oases, by which proper management strategies could be adopted to achieve sustainable food security.


2021 ◽  
Vol 125 ◽  
pp. 107580
Author(s):  
Wuping Huang ◽  
Mingming Zong ◽  
Zexin Fan ◽  
Yuan Feng ◽  
Shiyu Li ◽  
...  

2015 ◽  
Vol 79 (6) ◽  
pp. 1629-1637 ◽  
Author(s):  
Vladimir Ivezić ◽  
Bal Ram Singh ◽  
Vlatka Gvozdić ◽  
Zdenko Lončarić

Sign in / Sign up

Export Citation Format

Share Document