Characterizing phosphorus availability in waste products by chemical extractions and plant uptake

2020 ◽  
Vol 183 (4) ◽  
pp. 416-428
Author(s):  
Nina Høj Christiansen ◽  
Peter Sørensen ◽  
Rodrigo Labouriau ◽  
Bent T. Christensen ◽  
Gitte Holton Rubaek
2015 ◽  
Vol 3 (5) ◽  
pp. 387-395 ◽  
Author(s):  
Pratap Bhattacharyya ◽  
Amaresh Kumar Nayak ◽  
Mohammad Shahid ◽  
Rahul Tripathi ◽  
Sangita Mohanty ◽  
...  

2004 ◽  
Vol 33 (3) ◽  
pp. 965 ◽  
Author(s):  
G. F. Koopmans ◽  
W. J. Chardon ◽  
P. A. I. Ehlert ◽  
J. Dolfing ◽  
R. A. A. Suurs ◽  
...  

2020 ◽  
Author(s):  
Arindam Malakar ◽  
Michael Kaiser ◽  
Daniel D. Snow ◽  
Harkamal Walia ◽  
Chittaranjan Ray

2018 ◽  
Vol 9 (09) ◽  
pp. 21041-21049 ◽  
Author(s):  
I Putu Sudana Satria Artha ◽  
Nyoman Utari Vipriyanti ◽  
I Putu Sujana

Garbage can be interpreted as a consequence of the activities of human life. It is undeniable, garbage will always be there as long as life activities continue to run. Every year, it can be ascertained that the volume of waste will always increase along with the increasing pattern of public consumerism. The landfill which is increasingly polluting the environment requires a technique and management to manage waste into something useful and of economic value, Bantas Village, Selemadeg Timur District, Tabanan Regency currently has a Waste Management Site (TPS3R) managed by Non-Governmental Organizations (KSM ) The source of waste comes from Households, Stalls, Restaurant Entrepreneurs, Schools, Offices and Ceremonies which are organic and inorganic waste. The waste management system at Bantas Lestari TPS with 3R system is Reduce (reduction of waste products starts from the source), Reuse (reuse for waste that can be reused) and Recycle (recycling waste) to date it is still running but not optimal. The method used in this research is descriptive quantitative with data analysis using SWOT analysis. This study produces a Waste Management Strategy which is the result of research from the management aspect, aspects of human resources and aspects of infrastructure facilities.


2020 ◽  
Author(s):  
Riccardo Mobili ◽  
Sonia La Cognata ◽  
Francesca Merlo ◽  
Andrea Speltini ◽  
Massimo Boiocchi ◽  
...  

<div> <p>The extraction of the succinate dianion from a neutral aqueous solution into dichloromethane is obtained using a lipophilic cage-like dicopper(II) complex as the extractant. The quantitative extraction exploits the high affinity of the succinate anion for the cavity of the azacryptate. The anion is effectively transferred from the aqueous phase, buffered at pH 7 with HEPES, into dichloromethane. A 1:1 extractant:anion adduct is obtained. Extraction can be easily monitored by following changes in the UV-visible spectrum of the dicopper complex in dichloromethane, and by measuring the residual concentration of succinate in the aqueous phase by HPLC−UV. Considering i) the relevance of polycarboxylates in biochemistry, as e.g. normal intermediates of the TCA cycle, ii) the relevance of dicarboxylates in the environmental field, as e.g. waste products of industrial processes, and iii) the recently discovered role of succinate and other dicarboxylates in pathophysiological processes including cancer, our results open new perspectives for research in all contexts where selective recognition, trapping and extraction of polycarboxylates is required. </p> </div>


Sign in / Sign up

Export Citation Format

Share Document