General solution for diffusion‐controlled dissolution of spherical particles. 2. Evaluation of experimental data

2002 ◽  
Vol 91 (2) ◽  
pp. 534-542 ◽  
Author(s):  
Jianzhuo Wang ◽  
Douglas R. Flanagan
1968 ◽  
Vol 90 (4) ◽  
pp. 666-670 ◽  
Author(s):  
D. H. Cheng ◽  
H. J. Thailer

A general solution is presented for a thin, curved circular tube under in-plane bending. It includes the solution given by Clark and Reissner as a particular case in which the ratio of the radius of the tube to the radius of its center line is very small. The series expansions satisfy the equilibrium equation for any radius ratio while the compatibility condition is guaranteed by minimizing the complementary energy. The minimization is achieved in the manner of Raileigh-Ritz whereas the evaluation of integrals are facilitated by the use of binomial expansion. Numerical results correlate well with the experimental data. The solution is more rapidly convergent as compared to the existing analytical methods.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Aboozar Soleymanzadeh ◽  
Hamid Reza Erfani Gahrooei ◽  
Vahid Joekar-Niasar

Foam fluids are widely used in petroleum industry such as foam-enhanced hydrocarbon recovery, underbalanced drilling, and as proppant carrying fluid in hydraulic fracturing. The most important issue to be considered in foam behavior is foam rheology and specifically, apparent viscosity. Various models have been used in order to predict foam apparent viscosity; most of these equations are originally developed for suspension systems, containing rigid spherical particles, and therefore, they are unable to predict foam apparent viscosity with acceptable accuracy. In addition, the lack of a comprehensive model with usage in all foam qualities is still tangible in the literature. In this research, a new general empirical model with application in all foam qualities is proposed and validated against experimental data available in the literature. Despite the simplicity, results have near-unity correlation of determination (R2), which shows good agreement of the proposed model with experimental data. Additionally, a new definition for foam quality is presented, to be more representative of the foam texture.


Author(s):  
A. S. Pandit ◽  
H. K. D. H. Bhadeshia

A kinetic theory for the diffusion-controlled growth of pearlite is presented, which accounts simultaneously for diffusion through the austenite and via the transformation front. The simplified method abandons the need for mechanical equilibrium at the phase junctions and yet is able to explain experimental data on the growth rate of pearlite. Furthermore, unlike previous analyses, the deduced value for the activation energy for the interfacial diffusion of carbon is found to be realistic when compared with corresponding data for volume diffusion.


2011 ◽  
Vol 9 (4) ◽  
pp. 743-749 ◽  
Author(s):  
Jyrki Miettinen ◽  
Vania Gandova ◽  
Spas Georgiev ◽  
Gueorgui Vassilev

AbstractThermodynamic description is presented for the ternary Cu-Ni-Pb system. Optimized parameters of the sub-systems, Cu-Ni, Cu-Pb and Ni-Pb, are taken from earlier assessments and those of the ternary system are optimized in this study by using the experimental phase equilibrium and thermodynamic data. Better agreement is obtained by the present optimization. Calculated results are compared with the original experimental data to demonstrate the successfulness of this assessment. Moreover, a geometric model (general solution model) is used to estimate ternary integral molar Gibbs excess energies of the liquid phase from the bibary systems only. These values, however, disagree with the quantities obtained by thermodynamic optimizations.


1987 ◽  
Vol 109 (2) ◽  
pp. 71-74
Author(s):  
M. A. Abdrabboh ◽  
G. A. Karim

Based on a quasi-steady system, published experimental data on mass transfer in packed beds of spherical particles at relatively low Reynolds numbers, were employed to estimate the convective mass-transfer coefficients in the bed in terms of the corresponding values for single particles. The average transient fluid concentrations within the bed of particles were also obtained in terms of the corresponding single-particle concentrations using the lumped-heat-capacity system. Thus, experimental data published on volatilization of single oil sand spheres could then be extended to estimate the rates of volatilization of packed beds of oil sand spheres. A simple analytical expression could, therefore, be derived for estimating the transient mass loss from fixed beds of oil sand spheres in terms of the parameters involved.


1993 ◽  
Vol 118 (6) ◽  
pp. 757-761 ◽  
Author(s):  
Silvia Burés ◽  
Franklin A. Pokorny ◽  
David P. Landau ◽  
Alan M. Ferrenberg

A FORTRAN computer program was developed to simulate packing of spherical particles via a Monte Carlo procedure. Shrinkage in volume upon mixing different particle sizes was studied and simulated results were compared with experimental data. Maximum experimental shrinkage was obtained when the proportion of coarse particles of pine bark and sand mixtures ranged from 50% to 70% of the volume. Experimental shrinkage of a mixture of coarse and fine sand was closely reproduced by means of simulation. Particle size distribution appears to be the most important factor in relation to shrinkage and also in the establishment of relationships between the simulated and the experimental system.


Author(s):  
Б.В. Бошенятов

AbstractAnalytical dependences of the effective heat conductivity coefficient of an individual cluster and cluster nanofluid are obtained on the basis of classical equations of continuum mechanics with allowance for the interaction of temperature fields of spherical particles inside a cluster. The calculated dependences of the heat-conductivity coefficient of the cluster nanofluid agree with the corresponding experimental data.


Sign in / Sign up

Export Citation Format

Share Document