Enantiomeric 3-Chloromandelic Acid System: Binary Melting Point Phase Diagram, Ternary Solubility Phase Diagrams and Polymorphism

2010 ◽  
Vol 99 (9) ◽  
pp. 4084-4095 ◽  
Author(s):  
Tam Le Minh ◽  
Jan Von Langermann ◽  
Heike Lorenz ◽  
Andreas Seidel-Morgenstern
Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2929
Author(s):  
Han Gyeol Kim ◽  
Joonho Lee ◽  
Guy Makov

CALPHAD (CALculation of PHAse Diagram) is a useful tool to construct phase diagrams of various materials under different thermodynamic conditions. Researchers have extended the use of the CALPHAD method to nanophase diagrams and pressure phase diagrams. In this study, the phase diagram of an arbitrary A–B nanoparticle system under pressure was investigated. The effects of the interaction parameter and excess volume were investigated with increasing pressure. The eutectic temperature was found to decrease in most cases, except when the interaction parameter in the liquid was zero and that in the solid was positive, while the excess volume parameter of the liquid was positive. Under these conditions, the eutectic temperature increased with increasing pressure.


1984 ◽  
Vol 62 (3) ◽  
pp. 457-474 ◽  
Author(s):  
A. D. Pelton ◽  
C. W. Bale ◽  
P. L. Lin

Phase diagrams and thermodynamic properties of five additive molten salt ternary systems and nine reciprocal molten salt ternary systems containing the ions Li+, Na+, [Formula: see text], OH− are calculated from the thermodynamic properties of their binary subsystems which were obtained previously by a critical assessment of the thermodynamic data and the phase diagrams in these binary systems. Thermodynamic properties of ternary liquid phases are estimated from the binary properties by means of the Conformal Ionic Solution Theory. The ternary phase diagrams are then calculated from these thermodynamic properties by means of computer programs designed for the purpose. It is found that a ternary phase diagram can generally be calculated in this way with a maximum error about twice that of the maximum error in the binary phase diagrams upon which the calculations are based. If, in addition, some reliable ternary phase diagram measurements are available, these can be used to obtain small ternary correction terms. In this way, ternary phase diagram measurements can be smoothed and the isotherms drawn in a thermodynamically correct way. The thermodynamic approach permits experimental data to be critically assessed in the light of thermodynamic principles and accepted solution models. A critical assessment of error limits on all the calculated ternary diagrams is made, and suggestions as to which composition regions merit further experimental study are given.


2021 ◽  
Vol 29 (1) ◽  
pp. 5-14
Author(s):  
D. Anchishkin ◽  
V. Gnatovskyy ◽  
D. Zhuravel ◽  
V. Karpenko

A system of interacting relativistic bosons at finite temperatures and isospin densities is studied within the framework of the Skyrme­like mean­field model. The mean field contains both attractive and repulsive terms. The consideration is taken within the framework of the Canonical Ensemble and the isospin­density dependencies of thermodynamic quantities is obtained, in particular as the phase diagrams. It is shown that in such a system, in addition to the formation of a Bose­Einstein condensate, a liquid­gas phase transition is possible. We prove that the multi­boson system develops the Bose condensate for particles of high­density component only.


2015 ◽  
Vol 51 (2) ◽  
pp. 125-132 ◽  
Author(s):  
B. Hu ◽  
Y. Du ◽  
J.J. Yuan ◽  
Z.F. Liu ◽  
Q.P. Wang

Iased on the new experimental data available in the literature, the Mn-Ni-Si system has been reassessed using the CALPHAD (CALculation of PHAse Diagram) approach. Compared with the previous modeling, the ?8 and ?12 ternary phases were treated as the same phase according to the new experimental data. The Mn3Si phase was described with two sublattice model (Mn, Ni)3(Si)1. The reported new ternary phase ? was not considered in the present work. Comprehensive comparisons between the calculated and measured phase diagrams showed that a set of thermodynamic parameters of the Mn-Ni-Si system obtained in this work was more accurate than the previous one.


2014 ◽  
Vol 88 (2) ◽  
pp. 192-200
Author(s):  
Bohdan Zapeka ◽  
Andriy Say ◽  
Oxana Vlokh ◽  
Myroslav Kostyrko ◽  
Iryna Martynyuk-Lototska ◽  
...  

2004 ◽  
pp. 49-102

Abstract This chapter presents an overview of solder alloy systems that one is likely to encounter. It discusses the processes involved in the survey of solder alloy systems. The chapter describes the effect of metallic impurities on different solders. Extensive reference is made to phase diagrams to highlight particular points. An introduction to alloy constitution and phase diagrams designed for those with no background in the subject is presented, which covers the interpretation of phase diagrams and the associated terminology. The mechanism by which the intermetallics form and some of the implications of their presence in joints are discussed. The chapter describes the several key characteristics of eutectic alloys and factors most effective at depressing the melting point of solders by eutectic alloying.


CrystEngComm ◽  
2020 ◽  
Vol 22 (14) ◽  
pp. 2537-2542
Author(s):  
Lixing Song ◽  
Fucheng Leng ◽  
Koen Robeyns ◽  
Tom Leyssens

Quaternary phase diagram of ionic cocrystals with solid solution formation is generated and dissolution surface is depicted clearly by contour lines.


1987 ◽  
Vol 42 (12) ◽  
pp. 1421-1424 ◽  
Author(s):  
K. Igarashi ◽  
H. Ohtani ◽  
J. Mochinaga

The phase diagram of ternary system LaCl3-CaCl2-NaCl has been constructed from the phase diagrams of the three binary systems and of thirteen quasi-binary systems determined by DTA. For the binaries LaCl3-CaCl2 and CaCl2-NaCl eutectic points were observed at 651 °C , 35.1 mol% LaCl3 and at 508 °C , 49.9 mol% NaCl, respectively. For LaCl3-NaCl, a peritectic point besides the eutectic point at 545 °C , 36.1 mol% LaCl3 was found at 690 °C , 57.5 mol%, which is attributable to the formation of the peritectic compound 3 LaCl3 · NaCl. The phase diagram of the ternary system has a ternary eutetic point and a ternary peritectic point due to 3 LaCl3-NaCl, the form er at 462 °C and 12.1 - 3 9 .7 - 4 8 .2 mol% (LaCl3-CaCl2-NaCl) and the latter at 612 °C and 26.9 - 55.1 - 18.0 mol%.


1991 ◽  
Vol 46 (1-2) ◽  
pp. 206-210
Author(s):  
H.-P. Boßmann ◽  
J. Richter ◽  
N. Struck

AbstractThe electric conductivities of molten (Na, Ag)Cl, (Rb.Ag)Cl, (Na,Ag)Br, (Rb. Ag)Br, and (Cs, Ag)Br are determined as functions of composition and temperature from the melting point to 1100 K. The relation of the temperature coefficients to the phase diagram of the systems (K.Ag)Cl, (Rb. Ag)Cl, (Cs, Ag)Cl, and (Cs, Ag)I near and at the phase transition (liquid-solid) is studied. The molar conductivities and mobilities of the cations with reference to the common anion are evaluated.


Sign in / Sign up

Export Citation Format

Share Document