Simulation of ν 2 Raman band of methane as a function of pressure

Author(s):  
Aleksandr S. Tanichev ◽  
Dmitry V. Petrov
Keyword(s):  
2001 ◽  
Vol 15 (28n30) ◽  
pp. 3865-3868 ◽  
Author(s):  
H. MIYAOKA ◽  
T. KUZE ◽  
H. SANO ◽  
H. MORI ◽  
G. MIZUTANI ◽  
...  

We have obtained the Raman spectra of TiCl n (n= 2, 3, and 4). Assignments of the observed Raman bands were made by a normal mode analysis. The force constants were determined from the observed Raman band frequencies. We have found that the Ti-Cl stretching force constant increases as the oxidation number of the Ti species increases.


2021 ◽  
Vol 63 (9) ◽  
pp. 1646-1648
Author(s):  
D. V. Petrov ◽  
I. I. Matrosov ◽  
A. R. Zaripov ◽  
A. S. Tanichev
Keyword(s):  

1964 ◽  
Vol 42 (6) ◽  
pp. 1058-1069 ◽  
Author(s):  
A. D. May ◽  
G. Varghese ◽  
J. C. Stryland ◽  
H. L. Welsh

The frequencies of the Q(J) lines of the fundamental Raman band of compressed hydrogen gas were measured with high spectral resolution for a series of densities from 25 to 400 Amagat units at 300 °K and 85 °K. The frequency shifts are expressed as a power series in the gas density. The linear coefficient at a given temperature has the form aJ = ai + ae(nJ/n), where ai, constant for all the Q lines, can be interpreted in terms of isotropic intermolecular forces, and ae(nJ/n), proportional to the relative population of the initial J level, arises from the inphase coupled oscillation of pairs of molecules. The temperature variation of ai is analyzed on the basis of the Lennard-Jones intermolecular potential and the molecular pair distribution function. The repulsive overlap forces and the attractive dispersion forces give, respectively, positive and negative contributions to ai, which can be characterized by the empirical parameters Krep and Katt. The values of Katt and ae are in good agreement with calculations based on the polarizability model of the dispersion forces. The relation of the results to the Raman frequency shifts in solid hydrogen is discussed.


1981 ◽  
Vol 75 (4) ◽  
pp. 1612-1622 ◽  
Author(s):  
T. W. Żerda ◽  
J. Schroeder ◽  
J. Jonas

1996 ◽  
Vol 459 ◽  
Author(s):  
E. Ching-Prado ◽  
W. Pérez ◽  
A. Reynés-Figueroa ◽  
R. S. Katiyar ◽  
D. Ravichandran ◽  
...  

ABSTRACTThin films of SrBi2Nb2O9 (SBN) with thicknesses of 0.1, 0.2, and 0.4 μ were grown by Sol-gel technique on silicon, and annealed at 650°C. The SBN films were investigated by Raman scatering for the first time. Raman spectra in some of the samples present bands around 60, 167, 196, 222, 302, 451, 560, 771, 837, and 863 cm−1, which correspond to the SBN formation. The study indicates that the films are inhomogeneous, and only in samples with thicknesses 0.4 μ the SBN material was found in some places. The prominent Raman band around 870 cm−1, which is the A1g mode of the orthorhombic symmetry, is assigned to the symmetric stretching of the NbO6 octahedrals. The frequency of this band is found to shift in different places in the same sample, as well as from sample to sample. The frequency shifts and the width of the Raman bands are discussed in term of ions in non-equilibrium positions. FT-IR spectra reveal a sharp peak at 1260 cm−1, and two broad bands around 995 and 772 cm−1. The bandwidths of the latter two bands are believed to be associated with the presence of a high degree of defects in the films. The experimental results of the SBN films are compared with those obtained in SBT (T=Ta) films. X-ray diffraction and SEM techniques are also used for the structural characterization.


2020 ◽  
Vol 59 (1) ◽  
pp. 176-187 ◽  
Author(s):  
Cornel Cobianu ◽  
Niculae Dumbravescu ◽  
Bogdan-Catalin Serban ◽  
Octavian Buiu ◽  
Cosmin Romanitan ◽  
...  

AbstractThe paper presents the morphological, structural and compositional properties of the sonochemically prepared ZnO-1.4wt% Graphene (Z-G) nanocomposites as a function of pH value of suspension varying from 8.5 to 14 and thermal annealing at 450°C in nitrogen or air ambient. The SEM analysis of the Z-G hybrids dried at 150°C in air has shown a nano-flower like nanostructure for a pH value of 14. The XRD analysis of dried Z-G hybrids revealed a crystallite size increase from 3.5 nm to 18.4 nm with pH increase, and this result was explained in terms of colloids zeta potential evolution with pH value. The Raman and EDS spectroscopy have shown a split of the G band (1575 cm−1) of graphene into two bands (1575 cm−1 and 1605 cm−1), an increased height of D (1323 cm−1) band, and an additional amount of carbon due to CO2 absorption from the air, respectively. The carbon incorporation increased with the decrease of pH, and was associated with a hydrozincite phase, Zn5(CO3)2(OH)6. The formation of dried Z-G nanocomposite was clearly demonstrated only at a pH value equal to 14, where two ZnO Raman active bands at 314.9 cm−1 and 428.2 cm−1 appeared. This result may indicate the sensitivity of the Raman spectroscopy to the nanoflower-like nanostructure of dried Z-G hybrids prepared at pH=14. The thermal treatment of Z-G hybrids in N2at 450°C has increased the number of ZnO Raman bands as a function of pH value, it has decreased the amount of additional carbon by conversion of hydrozincite to ZnO and preserved the graphene profile. The thermal treatment in air at 450°C has increased the crystalline symmetry and stoichiometry of the ZnO as revealed by high and narrow Raman band from 99 cm−1 specific to Zn optical phonons, but it has severely affected the graphene profile in the Z-G hybrid, due to combustion of graphene in oxygen from the ambient.


1996 ◽  
Vol 378 (2) ◽  
pp. 111-119 ◽  
Author(s):  
Elizabeth P.G. Arêas ◽  
Mauro C.C. Ribeiro ◽  
Paulo S. Santos

Sign in / Sign up

Export Citation Format

Share Document