Manufacture of defatted canola meal with enhanced nutritive composition by air classification on an industrial scale

2019 ◽  
Vol 100 (2) ◽  
pp. 764-774 ◽  
Author(s):  
Curtis Rempel ◽  
Xiaodong Li ◽  
Xin Geng ◽  
Qiang Liu ◽  
Yachuan Zhang
Planta Medica ◽  
2009 ◽  
Vol 75 (09) ◽  
Author(s):  
JL Ríos ◽  
G Schinella ◽  
S Mosca ◽  
E Cienfuegos-Jovellanos ◽  
MA Pasamar ◽  
...  

TAPPI Journal ◽  
2015 ◽  
Vol 14 (11) ◽  
pp. 689-694
Author(s):  
QINGZHI MA ◽  
QI WANG ◽  
CHU WANG ◽  
NIANJIE FENG ◽  
HUAMIN ZHAI

The effect of oxygen (O2)-delignified pine kraft pulp pretreatment by high-purity, thermostable, and alkaline-tolerant xylanases on elemental chlorine free (ECF) bleaching of O2-delignification kraft pulp was studied. The study found that xylanase pretreatment preserved the intrinsic viscosity and yield of O2-delignified pulp while causing about 7% of delignification with high delignification selectivity. The xylanases with high purity, higher thermostability (75°C~80°C) in highly alkaline media (pH 8.0~9.5) could be applied on an industrial scale. Pulp pretreatment by the high-purity, thermostable, and alkaline tolerant xylanases could improve pulp brightness or reduce the chlorine dioxide (ClO2) consumption. In a D0ED1D2 bleaching sequence using the same amount of ClO2, the xylanase-pretreated pulp obtained a higher brightness (88.2% vs. 89.7% ISO) at the enzyme dose of 2 U/g pulp; or for the same brightness as control (88.2% ISO), the ClO2 dosage in the D0 stage was reduced by 27%, which represents a 16% savings in total ClO2 used for bleaching.


Author(s):  
Yu. Kanataev

The author, head of the Association of science-intensive enterprises having great experience in exploration of oil, precious metals, etc. in Russia and abroad (Austria, China, Israel, Ethiopia), first implemented on an industrial scale deep processing of oil using domestic technology, discusses the problems of further development of the Russian economy through the prism of their solutions to the main industries — oil and petrochemical complex.


2021 ◽  
pp. 2516600X2110059
Author(s):  
Som Sekhar Bhattacharyya ◽  
Rajesh Chandwani

The COVID-19 pandemic highlighted the necessity of good quality and adequate quantity of healthcare infrastructure facilities. Healthcare facilities were provided for COVID-19 facilities with improvisation and supplementary lateral infrastructure from other sectors. However, the main point of contemplation going into the future was regarding how to quickly develop healthcare facilities. The subject domain of ‘industrial engineering’ (IE) and its associated perspectives could provide some key insights regarding this. The authors undertook a conceptual literature review and provided theoretical argumentation toward this. The findings provided insights regarding the application of industrial engineering concepts in healthcare facilities and services.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 395-395
Author(s):  
Paul Tamayao ◽  
Gabriel O Ribeiro ◽  
Tim A McAllister ◽  
Hee-Eun Yang ◽  
A M Saleem ◽  
...  

Abstract This study investigated the effects of post-pyrolysis treated biochar on nutrient disappearance, total gas and methane (CH4) production, rumen fermentation and microbial protein synthesis in an artificial rumen system (RUSITEC) fed a barley silage-based diet. The basal diet consisted of 60% barley silage, 27% barley grain, 10% canola meal and 3% mineral/vitamin supplement (DM basis). Three spruced-based biochars, treated post-pyrolysis with either zinc chloride, hydrochloric acid/nitric acid mixture or sulfuric acid were added at 2.0% of substrate DM. In a randomized complete block design, treatments were assigned to sixteen vessels (n = 4/treatment) in two RUSITEC systems. The experiment was conducted over 15 d, with 8 d of adaptation and 7 d of sampling. Nutrient disappearance of dry matter (DM), organic matter (OM), acid detergent fiber (ADF) and neutral detergent fiber (NDF) was determined after 48 h of incubation from d 9 to 12, and microbial protein synthesis was measured from d 13–15. Data were analyzed using PROC MIXED in SAS, with the fixed effect of treatment and random effect of RUSITEC system and vessel. Biochar inclusion did not affect disappearance of DM (P = 0.49), OM (P = 0.60), CP (P = 0.14), NDF (P = 0.48), ADF (P = 0.11) or starch (P = 0.58). Biochar also had no effect on total gas production (P = 0.31) or CH4 produced expressed as a % of total gas production (P = 0.06), mg/d (P = 0.70), mg/g of DM incubated (P = 0.74), or mg/g of DM digested (P = 0.64). No effect on total VFA (P = 0.56) or NH3-N (P = 0.20) production were observed. Neither microbial protein synthesis nor total protozoa count were affected by biochar addition (P > 0.05). In conclusion, biochar inclusion in a silage-based diet did not exhibit the potential to mitigate CH4 emissions or improve digestion in a RUSITEC system.


Sign in / Sign up

Export Citation Format

Share Document