Encapsulation of lipases by nucleotide/metal ion coordination polymers: Enzymatic properties and their applications in glycerolysis and esterification studies

Author(s):  
Wenyi Chen ◽  
Lihong He ◽  
Wenzhu Song ◽  
Jianrong Huang ◽  
Nanjing Zhong
Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1101
Author(s):  
Anirban Karmakar ◽  
Anup Paul ◽  
Elia Pantanetti Sabatini ◽  
M. Fátima C. Guedes da Silva ◽  
Armando J. L. Pombeiro

The new coordination polymers (CPs) [Zn(μ-1κO1:1κO2-L)(H2O)2]n·n(H2O) (1) and [Cd(μ4-1κO1O2:2κN:3,4κO3-L)(H2O)]n·n(H2O) (2) are reported, being prepared by the solvothermal reactions of 5-{(pyren-4-ylmethyl)amino}isophthalic acid (H2L) with Zn(NO3)2.6H2O or Cd(NO3)2.4H2O, respectively. They were synthesized in a basic ethanolic medium or a DMF:H2O mixture, respectively. These compounds were characterized by single-crystal X-ray diffraction, FTIR spectroscopy, thermogravimetric and elemental analysis. The single-crystal X-ray diffraction analysis revealed that compound 1 is a one dimensional linear coordination polymer, whereas 2 presents a two dimensional network. In both compounds, the coordinating ligand (L2−) is twisted due to the rotation of the pyrene ring around the CH2-NH bond. In compound 1, the Zn(II) metal ion has a tetrahedral geometry, whereas, in 2, the dinuclear [Cd2(COO)2] moiety acts as a secondary building unit and the Cd(II) ion possesses a distorted octahedral geometry. Recently, several CPs have been explored for the cyanosilylation reaction under conventional conditions, but microwave-assisted cyanosilylation of aldehydes catalyzed by CPs has not yet been well studied. Thus, we have tested the solvent-free microwave-assisted cyanosilylation reactions of different aldehydes, with trimethylsilyl cyanide, using our synthesized compounds, which behave as highly active heterogeneous catalysts. The coordination polymer 1 is more effective than 2, conceivably due to the higher Lewis acidity of the Zn(II) than the Cd(II) center and to a higher accessibility of the metal centers in the former framework. We have also checked the heterogeneity and recyclability of these coordination polymers, showing that they remain active at least after four recyclings.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1786
Author(s):  
Carla Queirós ◽  
Chen Sun ◽  
Ana M. G. Silva ◽  
Baltazar de Castro ◽  
Juan Cabanillas-Gonzalez ◽  
...  

The development of straightforward reproducible methods for the preparation of new photoluminescent coordination polymers (CPs) is an important goal in luminescence and chemical sensing fields. Isophthalic acid derivatives have been reported for a wide range of applications, and in addition to their relatively low cost, have encouraged its use in the preparation of novel lanthanide-based coordination polymers (LnCPs). Considering that the photoluminescent properties of these CPs are highly dependent on the existence of water molecules in the crystal structure, our research efforts are now focused on the preparation of CP with the lowest water content possible, while considering a green chemistry approach. One- and two-dimensional (1D and 2D) LnCPs were prepared from 5-aminoisophthalic acid and Sm3+/Tb3+ using hydrothermal and/or microwave-assisted synthesis. The unprecedented LnCPs were characterized by single-crystal X-ray diffraction (SCRXD), powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM), and their photoluminescence (PL) properties were studied in the solid state, at room temperature, using the CPs as powders and encapsulated in poly(methyl methacrylate (PMMA) films, envisaging the potential preparation of devices for sensing. The materials revealed interesting PL properties that depend on the dimensionality, metal ion, co-ligand used and water content.


2018 ◽  
Vol 42 (12) ◽  
pp. 10309-10316 ◽  
Author(s):  
Basudeb Dutta ◽  
Arka Dey ◽  
Kaushik Naskar ◽  
Suvendu Maity ◽  
Faruk Ahmed ◽  
...  

Electrical conductivity was tuned by altering the metal ions in acetylenedicarboxylate (adc) and 4-styrylpyridine (4-spy)-based 1D coordination polymers, {[M(adc)(4-spy)2(H2O)2]}n (M = Zn and Cd).


2018 ◽  
Vol 47 (1) ◽  
pp. 264-268 ◽  
Author(s):  
Hong Sheng Quah ◽  
Li Ting Ng ◽  
Jagadese J. Vittal

Of the 9 nitro compounds tested for their efficiency to quench the photoluminescence of 28 lanthanide coordination polymers (CPs) containing 9,10-anthracene dicarboxylate (ADC), Brady's reagent was found to be the best.


2015 ◽  
Vol 68 (1) ◽  
pp. 121 ◽  
Author(s):  
Wenlong Liu ◽  
Xueying Wang ◽  
Mengqiang Wu ◽  
Bing Wang

Two new coordination polymers, namely, {[Cd3(bpt)2(bimb)2]·2(H2O)}n (1) and [Zn3(bpt)2(bimb)2]n (2) (bpt = biphenyl-3,4′,5-tricarboxylate, bimb = 1,4-bis(1-imidazol-yl)-2,5-dimethyl benzene), have been obtained under hydrothermal conditions. Their structures have been determined by single-crystal X-ray diffraction analysis and further characterised by elemental analysis and infrared spectroscopy. Complex 1 exhibits a trinodal (4,4,4)-connected topology with Schläfli symbol of (4.62.83)4.(64.82). Complex 2 is also a three-dimensional structure and displays a (3,4,6)-connected topology with Schläfli symbol of (4.62)2.(42.66.85.102).(64.82). It is shown that the asymmetrically tricarboxylate can bear diverse structures regulated by metal ions. The photoluminescence behaviours of compounds 1 and 2 were also discussed.


2011 ◽  
Vol 11 (8) ◽  
pp. 3653-3662 ◽  
Author(s):  
Christine N. Morrison ◽  
Annie K. Powell ◽  
George E. Kostakis

2016 ◽  
Vol 72 (11) ◽  
pp. 777-785
Author(s):  
Elena A. Mikhalyova ◽  
Swiatoslaw Trofimenko ◽  
Matthias Zeller ◽  
Anthony W. Addison ◽  
Vitaly V. Pavlishchuk

Polynuclear complexes and coordination polymers of 3dmetals have attracted significant interest evoked by a number of their unique properties. One of the most common approaches to the directed synthesis of coordination polymers is the linking of pre-prepared discrete coordination units by polydentate ligands. The formation of polynuclear complexes is usually a spontaneous process and precise prediction of the products of such reactions is virtually impossible in most cases. Tris(pyrazolyl)borates (Tp) act as tripodal `capping' ligands which form stable complexes with 3dmetal ions. In such 1:1 compounds, three metal-ion coordination sites are occupied by N atoms from a Tp anion. This limits the number of remaining coordination sites, and thus the number of additional ligands which may coordinate, and opens an attractive approach for the directed design of desirable structures by exploiting ligands with appropriate composition and topology. In the present study, Tp anions with neopentyl [TpNp, tris(3-neopentylpyrazolyl)borate] and cyclohexyl [TpCy, tris(3-cyclohexylpyrazolyl)borate] substituents were used as `capping' ligands and the dianion of tetraacetylethane (3,4-diacetylhexa-2,4-diene-2,5-diolate, tae2−) was employed as a bridge. The dinuclear complexes (μ-3,4-diacetylhexa-2,4-diene-2,5-diolato-κ4O2,O3:O4,O5)bis{[tris(3-cyclohexyl-1H-pyrazol-1-yl-κN2)borato]cobalt(II)} acetonitrile disolvate, [Co2(C27H40BN6)2(C10H12O4)]·2CH3CN, (I)·2CH3CN, and (μ-3,4-diacetylhexa-2,4-diene-2,5-diolato-κ4O2,O3:O4,O5)bis{[tris(3-neopentyl-1H-pyrazol-1-yl-κN2)borato]nickel(II)}, [Ni2(C24H40BN6)2(C10H12O4)], (II), were synthesized by the reaction of the mononuclear complexes TpCyCoCl or TpNpNiCl with H2tae (3,4-diacetylhexane-2,5-dione or tetraacetylethane) in the presence of NEt3as base. Compounds (I) and (II) were characterized by mass spectrometry, elemental analysis, and X-ray crystallography. They possess similar molecular structures, X-ray diffraction revealing them to be dinuclear in nature and composed of discrete Tp–Munits in which two metal ions are linked by a tae2−dianion. Each metal ion possesses a five-coordinate square-pyramidal environment. The interplanar angles between the acetylacetonate fragments are significantly smaller than the near-90° values commonly observed.


2015 ◽  
Vol 44 (3) ◽  
pp. 1292-1302 ◽  
Author(s):  
Lakshmi Kanta Das ◽  
Carlos J. Gómez-García ◽  
Ashutosh Ghosh

Three new 2D coordination polymers of different networks with significant variation in magnetic properties have been synthesized by changing the central metal in the trinuclear nodes.


Sign in / Sign up

Export Citation Format

Share Document