Microwave-assisted extraction of edible Cicerbita alpina shoots and its LC-MS phenolic profile

2013 ◽  
Vol 93 (11) ◽  
pp. 2676-2682 ◽  
Author(s):  
Lavinia Alexandru ◽  
Lorena Pizzale ◽  
Lanfranco Conte ◽  
Alessandro Barge ◽  
Giancarlo Cravotto
2021 ◽  
Vol 11 (11) ◽  
pp. 4744
Author(s):  
Ana Margarida Silva ◽  
João Pedro Lago ◽  
Diana Pinto ◽  
Manuela M. Moreira ◽  
Clara Grosso ◽  
...  

Salicornia ramosissima J.Woods is an edible halophyte, widely distributed in the Portuguese salt marsh that has been under valorized. The aim of this study is to expand the knowledge regarding S. ramosissima bioactive composition and safety, highlighting its potential use as nutraceutical ingredient. Therefore, extracts obtained by conventional (CE) and microwave-assisted extraction (MAE) were characterized regarding phenolic profile, antioxidant activity, radical scavenging capacity and intestinal cell effects. Moreover, organic pesticides were screened to guarantee the consumers safety. The highest phenolic and flavonoid contents were observed for the CE, as well as the scavenging capacity of O2●− (IC50 = 979.36 µg/mL) and HOCl (IC50 = 90.28 µg/mL). In contrast, the best antioxidant and antiradical activities were achieved by MAE (65.56 µmol FSE/g dw and 17.74 µg AAE/g dw for FRAP and ABTS assays, respectively). The phenolic composition was similar for both extracts, being characterized by the presence of phenolic acids, flavonols, flavanols, flavones and flavanones. The predominant compound for both extracts was myricetin. None of the extracts were cytotoxic in intestinal cell lines. Vestigial levels of β-endosulfan and p,p’-DDE were identified in MAE. These results support that S. ramosissima could be a source of bioactive compounds for nutraceutic industry.


2010 ◽  
Vol 30 (5) ◽  
pp. 567-568
Author(s):  
Xiao-li LI ◽  
Ming-yuan ZHANG ◽  
Wei-quan ZHAO ◽  
Man Li ◽  
Hai-ying TENG ◽  
...  

2015 ◽  
Vol 11 (3) ◽  
pp. 142-145 ◽  
Author(s):  
Simone Carradori ◽  
Luisa Mannina ◽  
Federica De Cosmi ◽  
Tamara Beccarini ◽  
Daniela Secci ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
pp. 430
Author(s):  
Hassan Hadi Mehdi Al Rubaiy ◽  
Ammar Altemimi ◽  
Ali Khudair Jaber Al Rikabi ◽  
Naoufal Lakhssassi ◽  
Anubhav Pratap-Singh

The present study proposes microwave-assisted extraction as a sustainable technique for the biosynthesis of bioactive compounds from rice fermented with Aspergillus flavus (koji). First, fermentation conditions (i.e., pH from 3–12, five temperatures from 20–40 °C, and four culture-fermentation media viz. wheat, wheat bran, malt and rice) were optimized for producing microbial bioactive compounds. Microwave extraction was performed at 2450 MHz and 500 W for 20, 30, and 40 s with seven solvents (distilled water, ethyl acetate, hexane, ethanol, chloroform, diethyl ether, and methanol). The obtained results revealed that ethyl acetate is the most appropriate solvent for extraction. Effects of this ethyl acetate extract were compared with a commercial synthetic antioxidant. Antioxidant properties were enhanced by preventing the oxidation of the linoleic acid (C18H32O2) with an inhibition rate (antioxidant efficacy) of 73.13%. Notably, the ferrous ion binding ability was marginally lower when compared to the disodium salt of ethylenediaminetetraacetic acid (EDTA). Additionally, the obtained total content of phenolic compounds in the ethyl acetate extract of fermented rice (koji) by Aspergillus flavus was 232.11 mg based on gallic acid/mL. Antioxidant compounds in the ethyl acetate extract of fermented rice showed stability under neutral conditions, as well as at high temperatures reaching 185 °C during 2 h, but were unstable under acidic and alkaline conditions. The results demonstrate the efficacy of novel microwave-assisted extraction technique for accelerating antioxidant production during rice fermentation.


Sign in / Sign up

Export Citation Format

Share Document