scholarly journals Generation of an in vitro model of the outer annulus fibrosus‐cartilage interface

JOR Spine ◽  
2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Jasmine E. Chong ◽  
J. Paul Santerre ◽  
Rita A. Kandel

Author(s):  
Anna T. Reza ◽  
Steven B. Nicoll

Current surgical treatments for intervertebral disc (IVD) degeneration result in decreased mobility of the spine [1]. A tissue engineering approach may provide an alternative that restores both IVD structure and function. The IVD is comprised of three distinct regions: the outer annulus fibrosus (OA), inner annulus fibrosus (IA), and the nucleus pulposus (NP). Each of the cell populations within these regions possess unique phenotypic properties that are greatly influenced by environmental factors, such as the surrounding 3-D extracellular matrix (ECM) and mechanical loading (i.e., hydrostatic pressurization) [2]. As such, both the 3-D scaffold and in vitro culture conditions may have marked effects on the development of tissue-engineered IVD constructs. Although the influence of mechanical loading on IVD cells and explants has been investigated, no prior studies have examined the impact of hydrostatic pressurization on OA and IA cells in 3-D culture. Therefore, the objective of this study was to determine the effects of dynamic hydrostatic pressurization on OA and IA cells seeded on 3-D fibrous poly(glycolic acid)-poly(L-lactic acid) (PGA-PLLA) scaffolds. We hypothesized that the application of hydrostatic pressure would promote increased production of type II collagen and chondroitin sulfate proteoglycan in both OA- and IA-seeded constructs.



Author(s):  
Hoda Keshmiri Neghab ◽  
Mohammad Hasan Soheilifar ◽  
Gholamreza Esmaeeli Djavid

Abstract. Wound healing consists of a series of highly orderly overlapping processes characterized by hemostasis, inflammation, proliferation, and remodeling. Prolongation or interruption in each phase can lead to delayed wound healing or a non-healing chronic wound. Vitamin A is a crucial nutrient that is most beneficial for the health of the skin. The present study was undertaken to determine the effect of vitamin A on regeneration, angiogenesis, and inflammation characteristics in an in vitro model system during wound healing. For this purpose, mouse skin normal fibroblast (L929), human umbilical vein endothelial cell (HUVEC), and monocyte/macrophage-like cell line (RAW 264.7) were considered to evaluate proliferation, angiogenesis, and anti-inflammatory responses, respectively. Vitamin A (0.1–5 μM) increased cellular proliferation of L929 and HUVEC (p < 0.05). Similarly, it stimulated angiogenesis by promoting endothelial cell migration up to approximately 4 fold and interestingly tube formation up to 8.5 fold (p < 0.01). Furthermore, vitamin A treatment was shown to decrease the level of nitric oxide production in a dose-dependent effect (p < 0.05), exhibiting the anti-inflammatory property of vitamin A in accelerating wound healing. These results may reveal the therapeutic potential of vitamin A in diabetic wound healing by stimulating regeneration, angiogenesis, and anti-inflammation responses.



2009 ◽  
Vol 47 (09) ◽  
Author(s):  
N Steubesand ◽  
K Kiehne ◽  
R Pahl ◽  
G Brunke ◽  
UR Fölsch ◽  
...  
Keyword(s):  


2011 ◽  
Vol 71 (05) ◽  
Author(s):  
M Salama ◽  
K Winkler ◽  
KF Murach ◽  
S Hofer ◽  
L Wildt ◽  
...  




Sign in / Sign up

Export Citation Format

Share Document