Anticorrosion property enhancement of Al–Li alloy 2A97 by lowering machined surface roughness

2020 ◽  
Vol 71 (12) ◽  
pp. 1980-1988 ◽  
Author(s):  
Jintao Niu ◽  
Zhanqiang Liu ◽  
Guijie Wang ◽  
Weimin Huang ◽  
Ying Xu
2014 ◽  
Vol 800-801 ◽  
pp. 576-579
Author(s):  
Lin Hua Hu ◽  
Ming Zhou ◽  
Yu Liang Zhang

In this work, cutting experiments were carried out on titanium alloy Ti6Al4V by using polycrystalline diamond (PCD) tools to investigate the effects of the tool geometries and cutting parameters on machined surface roughness. Experimental results show machined surface roughness decreases with increases in the flank angle, tool nose radius and cutting speed within a limited range respectively, and begins to increase as the factors reaches to certain values respectively. And machined surface roughness decreases with increases in feed rate and cutting depth respectively.


2021 ◽  
Vol 2021 (4) ◽  
pp. 4836-4840
Author(s):  
ROBERT STRAKA ◽  
◽  
JOZEF PETERKA ◽  
TOMAS VOPAT ◽  
◽  
...  

The article compares two cutting edge preparation methods and their influence on the machined surface roughness of the difficult to cut nickel alloy Inconel 718 and the tool wear of cutting inserts made of cemented carbide. The manufacturing and preparation process of cutting inserts used in the experiment were made by Dormer Pramet. The preparation methods used in the experiment were drag finishing and brushing. Cutting parameters did not change during the whole turning process to maintain the same conditions in each step of the process and were determined based on tests for a semi-finishing operation of the turning process. To obtain durability of 25 to 30 minutes with controlled development of the tool wear the cutting parameters were determined with cooperation with the cutting inserts manufacturer.


2014 ◽  
Vol 474 ◽  
pp. 369-374
Author(s):  
Jana Knedlova ◽  
Libuše Sýkorová ◽  
Vladimír Pata ◽  
Martina Malachová

The article focuses on the field of PMMA laser micromachining at change of the technological parameters. The aim was to evaluate machined surface roughness at different setting of DPI definition (number of dots paths on square inch). Commercial CO2laser Mercury L-30 by firm LaserPro, USA was used for experimental machining. Ray of laser could be focused on mark diameter d=185 mm.


2015 ◽  
Vol 809-810 ◽  
pp. 195-200
Author(s):  
Constatin Rotariu ◽  
Sevasti Mitsi ◽  
Dragos Paraschiv ◽  
Octavian Lupescu ◽  
Sergiu Lungu ◽  
...  

In this paper we analyze the influence of cutting parameters on the surface quality, surface roughness respectively, processed by turning when heat treated bearing steel, also called hard turning, and processing by turning of bearing steel without heat treatment. We set parameters of the cutting regime influencing the achievement of roughness surfaces which must be within the predetermined requirements if bearing rings exceeding 500 mm in diameter. This analysis will be done by statistical methods using the software Minitab 14.


2012 ◽  
Vol 248 ◽  
pp. 504-510 ◽  
Author(s):  
Valentin Mereuta ◽  
Mihaela Buciumeanu ◽  
Liviu Palaghian

The influence of machined surface roughness on the fatigue life of S355JR steel has been investigated. The specimen have been machined with three roughness levels and tested under plane fatigue. The surface roughness parameters were used to estimate the effective stress concentration factors Kt using the Arola-Ramulu model and Neuber model. In this paper it is proposed a modification for both models. Based on the experimental results was obtained the evolution of the effective stress concentration factor for the original Arola-Ramulu and Neuber models and also for the modified ones.


2020 ◽  
Vol 846 ◽  
pp. 122-127
Author(s):  
Gandjar Kiswanto ◽  
Yolanda Rudy Johan ◽  
Poly ◽  
Tae Jo Ko

Micro products or micro components are commonly used in today’s world. Research around micromanufacture technologies to produce a better product quality has been going on extensively. Ultrasonic vibration assisted micromilling (UVAM) is one of the technologies that can give a better machining qualities over the conventional ones. One of the benefits UVAM can give is reducing the machined surface roughness. The purpose of this paper is to give an idea how vibration assisted micromilling can give a better surface roughness quality. The theoritical surface roughness geometry model is made using MATLAB software. The cutting tool used in the simulation is end mill. There is a feature of the cutting tool called bottom cutting edge angle. This feature will be considered on this paper. The effects of the bottom cutting edge on workpiece machined surface can be looked visually from the simulation. Thus, the effects of cutting process using UVAM on the workpiece surface can be looked as well through the simulation.


Sign in / Sign up

Export Citation Format

Share Document