Evaluation of Coupling Agents in Poly(propylene)/Fly Ash Composites: Effect on Processing and Mechanical Properties

2011 ◽  
Vol 296 (9) ◽  
pp. 810-819 ◽  
Author(s):  
Itziar Iraola-Arregui ◽  
Herman Potgieter ◽  
Christopher Mark Liauw
2014 ◽  
Vol 338 (1) ◽  
pp. 62-71
Author(s):  
Itziar Iraola-Arregui ◽  
Christopher Mark Liauw ◽  
Herman Potgieter

2001 ◽  
Vol 82 (7) ◽  
pp. 1755-1760 ◽  
Author(s):  
S. Guhanathan ◽  
M. Saroja Devi ◽  
V. Murugesan

2019 ◽  
Vol 23 (9) ◽  
pp. 3875-3888 ◽  
Author(s):  
Anant Lal Murmu ◽  
Anamika Jain ◽  
Anjan Patel

Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2694 ◽  
Author(s):  
Shansuo Zheng ◽  
Lihua Niu ◽  
Pei Pei ◽  
Jinqi Dong

In order to evaluate the deterioration regularity for the mechanical properties of brick masonry due to acid rain corrosion, a series of mechanical property tests for mortars, bricks, shear prisms, and compressive prisms after acid rain corrosion were conducted. The apparent morphology and the compressive strength of the masonry materials (cement mortar, cement-lime mortar, cement-fly ash mortar, and brick), the shear behavior of the masonry, and the compression behavior of the masonry were analyzed. The resistance of acid rain corrosion for the cement-lime mortar prisms was the worst, and the incorporation of fly ash into the cement mortar did not improve the acid rain corrosion resistance. The effect of the acid rain corrosion damage on the mechanical properties for the brick was significant. With an increasing number of acid rain corrosion cycles, the compressive strength of the mortar prisms, and the shear and compressive strengths of the brick masonry first increased and then decreased. The peak stress first increased and then decreased whereas the peak strain gradually increased. The slope of the stress-strain curve for the compression prisms gradually decreased. Furthermore, a mathematical degradation model for the compressive strength of the masonry material (cement mortar, cement-lime mortar, cement-fly ash mortar, and brick), as well as the shear strength attenuation model and the compressive strength attenuation model of brick masonry after acid rain corrosion were proposed.


Author(s):  
Ng Hui-Teng ◽  
Heah Cheng-Yong ◽  
Liew Yun-Ming ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Kong Ern Hun ◽  
...  

Author(s):  
Anjaneya Babu Padavala ◽  
Malasani Potharaju ◽  
Venkata Ramesh Kode

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 495
Author(s):  
Mingkai Zhou ◽  
Xu Cheng ◽  
Xiao Chen

The stability of steel-slag road materials remains a critical issue in their utilization as an aggregate base course. In this pursuit, the present study was envisaged to investigate the effects of fly ash on the mechanical properties and expansion behavior of cement-fly-ash-stabilized steel slag. Strength tests and expansion tests of the cement-fly-ash-stabilized steel slag with varying additions of fly ash were carried out. The results indicate that the cement-fly-ash-stabilized steel slag exhibited good mechanical properties. The expansion rate and the number of bulges of the stabilized material reduced with an increase in the addition. When the addition of fly ash was 30–60%, the stabilized material was not damaged due to expansion. Furthermore, the results of X-CT, XRD and SEM-EDS show that fly ash reacted with the expansive component of the steel slag. In addition, the macro structure of the stabilized material was found to be changed by an increase in the concentration of the fly ash, in order to improve the volumetric stability. Our study shows that the cement-fly-ash-stabilized steel slag exhibits good mechanical properties and volumetric stability with reasonable additions of fly ash.


Sign in / Sign up

Export Citation Format

Share Document