scholarly journals Mechanical Behavior of Brick Masonry in an Acidic Atmospheric Environment

Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2694 ◽  
Author(s):  
Shansuo Zheng ◽  
Lihua Niu ◽  
Pei Pei ◽  
Jinqi Dong

In order to evaluate the deterioration regularity for the mechanical properties of brick masonry due to acid rain corrosion, a series of mechanical property tests for mortars, bricks, shear prisms, and compressive prisms after acid rain corrosion were conducted. The apparent morphology and the compressive strength of the masonry materials (cement mortar, cement-lime mortar, cement-fly ash mortar, and brick), the shear behavior of the masonry, and the compression behavior of the masonry were analyzed. The resistance of acid rain corrosion for the cement-lime mortar prisms was the worst, and the incorporation of fly ash into the cement mortar did not improve the acid rain corrosion resistance. The effect of the acid rain corrosion damage on the mechanical properties for the brick was significant. With an increasing number of acid rain corrosion cycles, the compressive strength of the mortar prisms, and the shear and compressive strengths of the brick masonry first increased and then decreased. The peak stress first increased and then decreased whereas the peak strain gradually increased. The slope of the stress-strain curve for the compression prisms gradually decreased. Furthermore, a mathematical degradation model for the compressive strength of the masonry material (cement mortar, cement-lime mortar, cement-fly ash mortar, and brick), as well as the shear strength attenuation model and the compressive strength attenuation model of brick masonry after acid rain corrosion were proposed.

2019 ◽  
Vol 9 (9) ◽  
pp. 1049-1054
Author(s):  
Yunxia Lun ◽  
Fangfang Zheng

This study is aimed at exploring the effect of steel slag powder (SSP), fly ash (FA), and silica fume (SF) on the mechanical properties and durability of cement mortar. SSP, SF, and FA were used as partial replacement of the Ordinary Portland cement (OPC). It was showed that the compressive and bending strength of steel slag powder were slightly lower than that of OPC. An increase in the SSP content caused a decrease in strength. However, the growth rate of compressive strength of SSP2 (20% replacement by the weight of OPC) at the curing ages of 90 days was about 8% higher than that of OPC, and the durability of SSP2 was better than that of OPC. The combination of mineral admixtures improved the later strength, water impermeability, and sulfate resistance compared with OPC and SSP2. The compressive strength of SSPFA (SSP and SF) at 90 days reached 70.3 MPa. The results of X-ray diffraction patterns and scanning electron microscopy indicated that SSP played a synergistic role with FA or SF to improve the performance of cement mortar.


2020 ◽  
Vol 870 ◽  
pp. 3-9
Author(s):  
Nahla N. Hilal ◽  
Mohammed T. Nawar ◽  
Abdulkader I. Al-Hadithi

In the present work, the properties of Polyethylene Waste cement mortar containing Polyethylene Waste treated by a reactive material are tested and compared with normal Polyethylene Waste and normal cement mortar. The Polyethylene, which is cured by a different reactive material such as: (cement, a fly ash and silica fume) is used as fine as aggregate a volumetric fractional replacing of the sand in a cement mortar. The percent of replacement was 10% by volume, density, compressive strength, modulus of rupture, and absorption are tested for all mixes at variable ages. The current results display that the cure of Polyethylene by cement were significantly improves the characteristics of Polyethylene cement mortar. Moreover, the results show that all treatment improved properties of cement mortar as a compared with Polyethylene without treatment.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3693
Author(s):  
Faxin Li ◽  
Dawei Yin ◽  
Chun Zhu ◽  
Feng Wang ◽  
Ning Jiang ◽  
...  

In this investigation, six groups of cemented coal gangue-fly ash backfill (CGFB) samples with varying amounts of kaolin (0, 10, 20, 30, 40, and 50%) instead of cement are prepared, and their mechanical properties are analyzed using uniaxial compression, acoustic emission, scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The uniaxial compressive strength, peak strain, and elastic modulus of CGFB samples decreased with the kaolin content. The average uniaxial compressive strength, elastic modulus, and peak strain of CGFB samples with 10% amount of kaolin are close to that of CGFB samples with no kaolin. The contribution of kaolin hydration to the strength of CGFB sample is lower than that of cement hydration, and the hydration products such as ettringite and calcium-silicate-hydrate gel decrease, thereby reducing strength, which mainly plays a role in filling pores. The contents of kaolin affect the failure characteristics of CGFB samples, which show tensile failure accompanied by local shear failure, and the failure degree increases with the kaolin content. The porosity of the fracture surface shows a decreasing trend as a whole. When the amount of kaolin instead of cement is 10%, the mechanical properties of CGFB samples are slightly different from those of CGFB samples without kaolin, and CGFB can meet the demand of filling strength. The research results provide a theoretical basis for the application of kaolin admixture in fill mining.


2013 ◽  
Vol 671-674 ◽  
pp. 1869-1872 ◽  
Author(s):  
Wen Min He ◽  
Shuan Fa Chen ◽  
Chuang Wang ◽  
Xue Gang Zhang ◽  
Rui Xiong

Basalt fiber (BF) has a lot of advantageous properties. The actual effectiveness of the fiber depends greatly on their dispersion degree in the composites. With the help of ultrasonic wave and a dispersant carboxymethyl cellulose (CMC), the even dispersion of short basalt fibers in water is realized. The fluidity of the basalt fiber cement mortar becomes less as the fiber content increasing. When the fluidity of mortar of BFRC is greater than 170mm, the even dispersion of short basalt fibers in BFRC can be realized. Fly ash can effectively improve the fluidity of BFRC and the density of cement matrix. When the amount of fly ash replaces the cement less than 25% by weight, it can improve both the compressive strength and tensile strength at age of 28 days.


2013 ◽  
Vol 78 (6) ◽  
pp. 851-863 ◽  
Author(s):  
Irena Nikolic ◽  
Dijana Djurovic ◽  
Radomir Zejak ◽  
Ljiljana Karanovic ◽  
Milena Tadic ◽  
...  

The process of geopolymerization involves the reaction of solid aluminosilicate materials with highly alkaline silicate solution yielding an aluminosilicate inorganic polymer named geopolymer, which may be successfully applied in civil engineering as a replacement for cement. In this paper we have investigated the influence of synthesis parameters: solid to liquid ratio, NaOH concentration and the ratio of Na2SiO3/NaOH, on the mechanical properties and hydrolytic stability of fly ash based geopolymers in distilled water, sea water and simulated acid rain. The highest value of compressive strength was obtained using 10 mol dm-3 NaOH and at the Na2SiO3/NaOH ratio of 1.5. Moreover, the results have shown that mechanical properties of fly ash based geopolymers are in correlation with their hydrolytic stability. Factors that increase the compressive strength also increase the hydrolytic stability of fly ash based geopolymers. The best hydrolytic stability of fly ash based geopolymers was shown in sea water while the lowest stability was recorded in simulated acid rain.


2012 ◽  
Vol 598 ◽  
pp. 535-538 ◽  
Author(s):  
Dong Mei Liu

The strength of cement mortar in 90 dates all decreased with replacement of PSP or fly ash increasing, but the decreasing trends at 90 dates were clearly less than that at early dates. At 90 dates, the strength of cement mortar with replacement of 40% to 60% PSP was higher than that of cement with fly ash. When replacement of PSP was between from 20% to 50%, the strength of mortar at 90 dates was basically same. So, PSP also can be used as mineral admixture with replacement levels of 20% to 50% in dam concrete. The strength of mortar mixed together with fly ash and PSP was greater than that of mortar mixed only with fly ash or PSP. The influence of PSP and fly ash blending proportion on flexure and compressive strength was not significant. The effect of PSP fineness on early strength was little, but that on later strength was slight.


2020 ◽  
Vol 38 (10A) ◽  
pp. 1522-1530
Author(s):  
Rawnaq S. Mahdi ◽  
Aseel B. AL-Zubidi ◽  
Hassan N. Hashim

This work reports on the incorporation of Flint and Kaolin rocks powders in the cement mortar in an attempt to improve its mechanical properties and produce an eco-friendly mortar. Flint and Kaolin powders are prepared by dry mechanical milling. The two powders are added separately to the mortars substituting cement partially. The two powders are found to improve the mechanical properties of the mortars. Hardness and compressive strength are found to increase with the increase of powders constituents in the cement mortars. In addition, the two powders affect water absorption and thermal conductivity of the mortar specimens which are desirable for construction applications. Kaolin is found to have a greater effect on the mechanical properties, water absorption, and thermal conductivity of the mortars than Flint. This behavior is discussed and analyzed based on the compositional and structural properties of the rocks powders.


2021 ◽  
Vol 13 (8) ◽  
pp. 4546
Author(s):  
Kaiyue Zhao ◽  
Peng Zhang ◽  
Bing Wang ◽  
Yupeng Tian ◽  
Shanbin Xue ◽  
...  

Cement-based materials prepared with activated water induced by a magnetic field or electric field represent a possible solution to environmental issues caused by the worldwide utilization of chemical admixtures. In this contribution, electric- and magnetic-activated water have been produced. The workability and mechanical properties of cement mortar prepared with this activated water have been investigated. The results indicate that the pH and absorbance (Abs) values of the water varied as the electric and magnetic field changed, and their values increased significantly, exhibiting improved activity compared with that of the untreated water. In addition, activated water still retains activity within 30 min of the resting time. The fluidity of the cement paste prepared with electric-activated water was significantly larger than that of the untreated paste. However, the level of improvement differed with the worst performance resulting from cement paste prepared with alternating voltage activated water. In terms of mechanical properties, both compressive strength and flexural strength obtained its maximum values at 280 mT with two processing cycles. The compressive strength increased 26% as the curing time increased from 7 days to 28 days and flexural strength increased by 31%. In addition, through the introduction of magnetic-activated water into cement mortar, the mechanical strength can be maintained without losing its workability when the amount of cement is reduced.


2021 ◽  
Vol 11 (7) ◽  
pp. 3032
Author(s):  
Tuan Anh Le ◽  
Sinh Hoang Le ◽  
Thuy Ninh Nguyen ◽  
Khoa Tan Nguyen

The use of fluid catalytic cracking (FCC) by-products as aluminosilicate precursors in geopolymer binders has attracted significant interest from researchers in recent years owing to their high alumina and silica contents. Introduced in this study is the use of geopolymer concrete comprising FCC residue combined with fly ash as the requisite source of aluminosilicate. Fly ash was replaced with various FCC residue contents ranging from 0–100% by mass of binder. Results from standard testing methods showed that geopolymer concrete rheological properties such as yield stress and plastic viscosity as well as mechanical properties including compressive strength, flexural strength, and elastic modulus were affected significantly by the FCC residue content. With alkali liquid to geopolymer solid ratios (AL:GS) of 0.4 and 0.5, a reduction in compressive and flexural strength was observed in the case of geopolymer concrete with increasing FCC residue content. On the contrary, geopolymer concrete with increasing FCC residue content exhibited improved strength with an AL:GS ratio of 0.65. Relationships enabling estimation of geopolymer elastic modulus based on compressive strength were investigated. Scanning electron microscope (SEM) images and X-ray diffraction (XRD) patterns revealed that the final product from the geopolymerization process consisting of FCC residue was similar to fly ash-based geopolymer concrete. These observations highlight the potential of FCC residue as an aluminosilicate source for geopolymer products.


2011 ◽  
Vol 418-420 ◽  
pp. 406-410
Author(s):  
Jun Liu ◽  
Yao Li ◽  
Dan Dan Hong ◽  
Yu Liu

Abstract. Recycled aggregate—rural building material wastes pretreated by cement mortar—are applied into concrete with different replacement rates: 0, 25%, 50%, 75%, and 100%. Results from measurements of compressive strength, cleavage tensile strength, mass loss after fast freeze-thaw cycles, and compressive strength loss indicate that a different recycled aggregate replacement rate certainly influences concrete mechanical properties and frost resistance. Recycled aggregate replacement rates less than 75% performs better than common concrete. Data from the 100% replacement rate is worse than that of rates less than 75% but still satisfy the general demands of GB standard on C30 concrete.


Sign in / Sign up

Export Citation Format

Share Document