Controlled Aggregation of Biopolymer-Wrapped Carbon Nanotubes in Aqueous Suspension, Induced by Cationic Porphyrin

2014 ◽  
Vol 335 (1) ◽  
pp. 51-57 ◽  
Author(s):  
E. S. Zarudnev ◽  
V. A. Karachevtsev
2012 ◽  
Vol 22 (21) ◽  
pp. 10795 ◽  
Author(s):  
Eugen S. Zarudnev ◽  
Alexander M. Plokhotnichenko ◽  
Victor S. Leontiev ◽  
Igor A. Levitsky ◽  
Victor A. Karachevtsev

2014 ◽  
Vol 605 ◽  
pp. 322-325
Author(s):  
Robert Olejnik ◽  
Jiri Matyas ◽  
Petr Slobodian ◽  
Karel Vlcek

Carbon nanotubes in the form of entangled network can be used as a multifunctional composite material for a wide range of using. A new and perspective usage is a passive antenna and gas sensing element. The antenna works well at 1.284 GHz. The local reflection minimum is 11.48 dB. The reflection coefficient r=0.2667. The transmission power in this frequency is 93%. Multiwall carbon nanotubes (MWCNT) network Buckypaper was made by the vacuum filtration method of MWCNT aqueous suspension. The sensitivity of multi-wall carbon nanotube (MWCNT) networks of randomly entangled pure and HNO3 oxidized nanotubes to polar and nonpolar organic vapors (ethanol, heptane), has been investigated by resistance measurements. The results demonstrate that the network electrical resistance increases when exposed to organic solvent vapors, and a reversible reaction is observed when the sample is removed from the vapors. The investigated MWCNT networks could be potentially used as sensing elements for sensitive and selective organic vapor detection.


2021 ◽  
Author(s):  
MIA CARROLA ◽  
AMIR ASADI

Though a revolutionary process, additive manufacturing (AM) has left more to be desired from printed parts, specifically, improved interlayer strength and minimal defects such as porosity. To overcome these common issues, nanocomposites have become one of the most popular materials used in AM, with various nanoparticles used to achieve a variety of characteristics. The use of these technologies together allows for both to synergistically enhance the final printed parts by improving the process and products simultaneously. Here, we introduce a novel, scalable technique to coat ABS pellets with cellulose nanocrystal (CNC) bonded carbon nanotubes (CNT), to improve the adhesion between layers as well as the mechanical properties of printed parts. An aqueous suspension of CNT-CNC is used to coat ABS pellets before they are dried and extruded into filament for printing. The filament produced using this manufacturing method showed an increase in tensile and interlayer strength as well as improved thermal conductivity. This process uses water as solvent and pristine nanoparticles without the need for any functionalization or surfactants, promoting its scalability. This process has the potential to be used with various polymers and nanoparticles, which allows the materials to be specifically tailored to the end application, (i.e. strength, conductivity, antibacterial, etc.). These nanocomposite filaments have the potential to revolutionize the way that additive manufacturing is utilized in a variety of industries.


2009 ◽  
Vol 60-61 ◽  
pp. 394-398 ◽  
Author(s):  
Gen Sheng Wu ◽  
Jue Kuan Yang ◽  
Shu Lin Ge ◽  
Yu Juan Wang ◽  
Min Hua Chen ◽  
...  

The stable and homogeneneous aqueous suspension of carbon nanotubes was prepared in this study. The stability of the nanofluids was improved greatly due to the use of a new dispersant, humic acid. The thermal conductivity of the aqueous suspension was measured with the 3ω method. The experimental results showed that the thermal conductivity of the suspensions increases with the temperature and also is nearly proportional to the loading of the nanoparticles. The thermal conductivity enhancement of single-walled carbon nanotubes (SWNTs) suspensions is better than that of the multi-walled carbon nanotubes (MWNTs) suspensions. Especially for a volume fraction of 0.3846% SWNTs, the thermal conductivity is enhanced by 40.5%. Furthermore, the results at 30°C match well with Jang and Choi’s model.


2008 ◽  
Vol 8 (1) ◽  
pp. 420-423 ◽  
Author(s):  
Dimitrios Tasis ◽  
Konstantinos Papagelis ◽  
Dionysios Douroumis ◽  
James R. Smith ◽  
Nikolaos Bouropoulos ◽  
...  

The one-step dispersion of HiPco single-walled carbon nanotubes in aqueous media with the use of a synthetic lyso-phosphatidylcholine was studied. Solubilization occurs through wrapping of lipid molecules around the circumference of the tubes, yielding lipid monolayers on the graphitic sidewalls as evidenced by atomic force microscopy imaging and dynamic light scattering measurements. Raman spectroscopy showed that the dispersion and centrifugation process leads to an effective enrichment of the stable aqueous suspension in carbon nanostructures with smaller diameters.


BioTechniques ◽  
2008 ◽  
Vol 44 (4) ◽  
pp. 537-545 ◽  
Author(s):  
Zhizhou Zhang ◽  
Cencao Shen ◽  
Mingchun Wang ◽  
Han Han ◽  
Xiaohong Cao

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Martin Michálek ◽  
Michael Bredol

Functionalized and raw multiwall carbon nanotubes (MWCNTs) were investigated colloid-chemically in order to study the role of polar versus nonpolar interaction with a polyurethane (PU) matrix. Both kinds of MWCNTs were dispersed by ultrasonication in the presence of a surfactant (sodium dodecyl sulphate) in aqueous solution. Functional groups on the nanotube surface were characterized by infrared spectroscopy and by theζ-potential in aqueous suspension. Such suspensions were added to waterborne PU dispersions, drop-cast on glass substrates and cured. The percolation threshold for electrical conductivity with polar (functionalized) MWCNTs was reached at 0.24 wt.%, whereas at concentrations as high as 2 wt.%, PU films with nonpolar MWCNTs stayed below the percolation threshold. With an addition of 0.4 wt.% polar MWCNTs, the electrical conductivity increased to >10−6 S/cm in the cured coating layer. These results are interpreted with respect to the chemical nature of the PU matrix.


Sign in / Sign up

Export Citation Format

Share Document