Morpholine as a privileged structure: A review on the medicinal chemistry and pharmacological activity of morpholine containing bioactive molecules

2020 ◽  
Vol 40 (2) ◽  
pp. 709-752 ◽  
Author(s):  
Angeliki P. Kourounakis ◽  
Dimitrios Xanthopoulos ◽  
Ariadni Tzara
2007 ◽  
Vol 60 (11) ◽  
pp. 795 ◽  
Author(s):  
Nicos A. Petasis

The present essay offers an overview of the latest developments in the chemistry of organoboron compounds. The unique structural characteristics and the versatile reactivity profile of organoboron compounds continue to expand their roles in several areas of chemistry. A growing number of boron-mediated reactions have become vital tools for synthetic chemistry, particularly in asymmetric synthesis, metal-catalyzed processes, acid catalysis, and multicomponent reactions. As a result, boronic acids and related molecules have now evolved as major players in synthetic and medicinal chemistry. Moreover, their remnant electrophilic reactivity, even under physiological conditions, has allowed their incorporation in a growing number of bioactive molecules, including bortezomib, a clinically approved anticancer agent. Finally, the sensitive and selective binding of boronic acids to diols and carbohydrates has led to the development of a growing number of novel chemosensors for the detection, quantification, and imaging of glucose and other carbohydrates. There is no doubt that the chemistry of organoboron compounds will continue to expand into new discoveries and new applications in several fields of science.


2020 ◽  
Vol 12 (17) ◽  
pp. 1547-1563
Author(s):  
Enol López ◽  
María Lourdes Linares ◽  
Jesús Alcázar

This perspective scrutinizes flow chemistry as a useful tool for medicinal chemists to expand the current chemical capabilities in drug discovery. This technology has demonstrated his value not only for the traditional reactions used in Pharma for the last 20 years, but also for bringing back to the lab underused chemistries to access novel chemical space. The combination with other technologies, such as photochemistry and electrochemistry, is opening new avenues for reactivity that will smoothen the access to complex molecules. The introduction of all these technologies in automated platforms will improve the productivity of medicinal chemistry labs reducing the cycle times to get novel and differentiated bioactive molecules, accelerating discovery cycle times.


2019 ◽  
Vol 6 (1) ◽  
pp. 23-29 ◽  
Author(s):  
Biswa Mohan Sahoo ◽  
Bimal Krishna Banik ◽  
Mazaharunnisa ◽  
Naidu Srinivasa Rao ◽  
Bodapati Raju

Background: Benzimidazole is the fused heterocyclic aromatic compound. It is an essential pharmacophore and privileged structure for the development of new drug molecules. These are bioactive molecules present in various anthelmintic drugs such as albendazole, mebendazole, parbendazole, triclabendazole etc. Methods: Benzimidazole derivatives are synthesized by reaction between orthophenylene diamine and anthranillic acid followed by acetylation in the presence of acetic anhydride. Finally, the acetylated products undergo Claisen-Schimdt condensation with various substituted benzaldehydes to produce corresponding benzimidazole derivatives or chalcones. Both conventional and microwave irradiation technology are followed to get the titled compounds. The titled compounds are screened for their anticonvulsant and neurotoxicity activity. Results: By the help of microwave synthesis, the yield of product was increased in less reaction time. So, it follows Green chemistry approach by making above reactions eco-friendly. Some of the compounds exhibited significant anticonvulsant activity as compared to standard drug. Conclusion: In the present investigation, we have synthesized novel benzimdazole derivatives with chalone moiety to improve the biological activity. The compounds were obtained under microwave reaction with high yield in a short reaction time.


2020 ◽  
Vol 26 (24) ◽  
pp. 2843-2858 ◽  
Author(s):  
Emília P.T. Leitão

This review summarizes the synthetic methodologies used in the last 25 years for the synthesis of chalcones, which are a class of flavonoids having a 1,3-diphenyl-2-propene-1-one backbone. These compounds are considered a hot topic in the field of medicinal chemistry, due to their pharmacological activity and because they are important precursors for the synthesis of heterocyclic compounds with therapeutic applications such as: flavones, flavanones, isoxazolines, benzothiazepines, pyrimidines and pyrazolines derivatives.


Author(s):  
Faheem ◽  
Banoth Karan Kumar ◽  
Kondapalli Venkata Gowri Chandra Sekhar ◽  
Selvaraj Kunjiappan ◽  
Joazaizulfazli Jamalis ◽  
...  

: β-Carboline, a naturally occurring indole alkaloid, holds a momentous spot in the field of medicinal chemistry due to its myriad of pharmacological actions like anticancer, antiviral, antibacterial, antifungal, antileishmanial, antimalarial, neuropharmacological, anti-inflammatory, anti-thrombotic among others. β-Carbolines exhibit their pharmacological activity via diverse mechanisms. This review provides a recent update (2015-2020) on the anti-infective potential of natural and synthetic β-carboline analogs with particular focus on its antibacterial, antifungal, antiviral, antimalarial, antileishmanial and antitrypanosomal properties. In cases where enough details are available, a note on its mechanism of action is also added.


2020 ◽  
Vol 17 (5) ◽  
pp. 574-584 ◽  
Author(s):  
Pratiksha N. Chopra ◽  
Jagdish K. Sahu

In the field of heterocyclic medicinal chemistry, especially five-membered ring structures containing a nitrogen atom, imidazole core is an imperative aromatic heterocycle which is usually present in naturally occurring products and synthetic bioactive molecules. The occurrence of imidazole moiety in therapeutic compounds may be beneficial in terms of improving water-soluble properties due to its two nitrogen atoms which leads to the creation of hydrogen bonds. The imidazole nucleus has also been recognized as an important isostere of triazole, pyrazole, thiazole, tetrazole, oxazole, amide etc. for the purpose of designing and development of various biologically active molecules. Moreover, imidazole core as an attractive binding site could interact with diverse cations and anions as well as biomolecules through different reactions in the human biological system thus displaying extensive biological activities. This effort thoroughly provides a wide-ranging assessment in current drug discovery and developments of imidazolebased analogues in the entire series of synthetic medicinal chemistry as antibacterial and antifungal, anticancer, anti-tubercular, analgesic and anti-inflammatory, anti-neuropathic, antihypertensive, anti-allergic, anti-parasitic, antiviral, antidepressant, anti-obesity and so on, altogether with their prospective approaches in diagnostic and pathological field. It is expected that the present review will be supportive on behalf of new opinions in the search for rational strategies of more efficacious and less toxic medicinal agents and drugs containing imidazole core.


Author(s):  
Lucas F. E. Moor ◽  
Thatyana R. A. Vasconcelos ◽  
Raisa da R. Reis ◽  
Ligia S. S. Pinto ◽  
Thamires M. da Costa

: Quinoline and its derivatives comprise an important group of heterocyclic compounds that exhibits a wide range of pharmacological properties such as antibacterial, antiviral, anticancer, antiparasitic, anti-Alzheimer and anticholesterol. In fact, the quinoline nucleus is found in the structure of many drugs and in rational design in medicinal chemistry for the discovery of novel bioactive molecules. Persistent efforts have been made over the years to develop novel congeners with superior biological activities and minimal potential for undesirable side effects. This review highlights some discoveries on the development of quinoline-based compounds in recent years (2013-2019) focusing on their biological activities, including anticancer, antitubercular, antimalarial, anti-ZIKV, anti-DENV, anti-Leishmania and anti-Alzheimer’s disease.


2022 ◽  
Author(s):  
A. K. Sinha ◽  
R. Singh

AbstractThe clickable addition reaction between thiols and unsaturated compounds leading to the generation of (branched/linear) thioethers or (branched/linear) vinyl sulfides is known as the hydrothiolation reaction. Based upon the nature of unsaturation, i.e. double bond or triple bond, hydrothiolation reactions are classified as thiol–ene and thiol–yne click reactions, respectively. These reactions have emerged as a powerful and widely used strategy for the generation of carbon–sulfur bonds due to several associated benefits including versatile synthetic procedures, wide functional-group tolerance, high atom economy with few to no byproducts, and simple purification. The hydrothiolation reactions have numerous trapping applications in the fields of polymer chemistry, nanoengineering, pharmaceuticals, natural products, and perhaps most importantly in medicinal chemistry for the synthesis of many drugs and bioactive molecules.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4323
Author(s):  
Mariana Pereira Silva ◽  
Lucília Saraiva ◽  
Madalena Pinto ◽  
Maria Emília Sousa

Boron containing compounds have not been widely studied in Medicinal Chemistry, mainly due to the idea that this group could confer some toxicity. Nowadays, this concept has been demystified and, especially after the discovery of the drug bortezomib, the interest for these compounds, mainly boronic acids, has been growing. In this review, several activities of boronic acids, such as anticancer, antibacterial, antiviral activity, and even their application as sensors and delivery systems are addressed. The synthetic processes used to obtain these active compounds are also referred. Noteworthy, the molecular modification by the introduction of boronic acid group to bioactive molecules has shown to modify selectivity, physicochemical, and pharmacokinetic characteristics, with the improvement of the already existing activities. Besides, the preparation of compounds with this chemical group is relatively simple and well known. Taking into consideration these findings, this review reinforces the relevance of extending the studies with boronic acids in Medicinal Chemistry, in order to obtain new promising drugs shortly.


Sign in / Sign up

Export Citation Format

Share Document