Betaine supplementation causes increase in carnitine metabolites in the muscle and liver of mice fed a high-fat diet as studied by nontargeted LC-MS metabolomics approach

2013 ◽  
Vol 57 (11) ◽  
pp. 1959-1968 ◽  
Author(s):  
Jenna Pekkinen ◽  
Kaisa Olli ◽  
Anne Huotari ◽  
Kirsti Tiihonen ◽  
Pekka Keski-Rahkonen ◽  
...  
2015 ◽  
Vol 114 (6) ◽  
pp. 995-996 ◽  
Author(s):  
Li Xu ◽  
Danping Huang ◽  
Qiaoling Hu ◽  
Jing Wu ◽  
Yizhen Wang ◽  
...  

AbstractIn the abstract, these sentences (page 1, line 5) should be: ‘Additionally, hepatic betaine–homocysteine methyltransferase concentration as well as its mRNA abundance and lecithin level were found increased (P<0·05) by betaine supplementation in both basal diet-fed rats and high-fat diet-fed rats. Betaine administration in high-fat diet-fed rats exhibited a higher (P<0·05) concentration of hepatic carnitine palmitoyltransferase 1 (CPT1) comparedwith high-fat diet-fed rats.’


Amino Acids ◽  
2015 ◽  
Vol 47 (4) ◽  
pp. 839-846 ◽  
Author(s):  
Rafael Deminice ◽  
Robin P. da Silva ◽  
Simon G. Lamarre ◽  
Karen B. Kelly ◽  
René L. Jacobs ◽  
...  

2010 ◽  
Vol 298 (5) ◽  
pp. G634-G642 ◽  
Author(s):  
Zhigang Wang ◽  
Tong Yao ◽  
Maria Pini ◽  
Zhanxiang Zhou ◽  
Giamila Fantuzzi ◽  
...  

Adipose tissue dysfunction, featured by insulin resistance and/or dysregulated adipokine production, plays a central role not only in disease initiation but also in the progression to nonalcoholic steatohepatitis and cirrhosis. Promising beneficial effects of betaine supplementation on nonalcoholic fatty liver disease (NAFLD) have been reported in both clinical investigations and experimental studies; however, data related to betaine therapy in NAFLD are still limited. In this study, we examined the effects of betaine supplementation on hepatic fat accumulation and injury in mice fed a high-fat diet and evaluated mechanisms underlying its hepatoprotective effects. Male C57BL/6 mice weighing 25 ± 0.5 (SE) g were divided into four groups (8 mice/group) and started on one of four treatments: control diet, control diet supplemented with betaine, high-fat diet, and high-fat diet supplemented with betaine. Betaine was supplemented in the drinking water at a concentration of 1% (wt/vol) (anhydrous). Our results showed that long-term high-fat feeding caused NAFLD in mice, which was manifested by excessive neutral fat accumulation in the liver and elevated plasma alanine aminotransferase levels. Betaine supplementation alleviated hepatic pathological changes, which were concomitant with attenuated insulin resistance as shown by improved homeostasis model assessment of basal insulin resistance values and glucose tolerance test, and corrected abnormal adipokine (adiponectin, resistin, and leptin) productions. Specifically, betaine supplementation enhanced insulin sensitivity in adipose tissue as shown by improved extracellular signal-regulated kinases 1/2 and protein kinase B activations. In adipocytes freshly isolated from mice fed a high-fat diet, pretreatment of betaine enhanced the insulin signaling pathway and improved adipokine productions. Further investigation using whole liver tissues revealed that betaine supplementation alleviated the high-fat diet-induced endoplasmic reticulum stress response in adipose tissue as shown by attenuated glucose-regulated protein 78/C/EBP homologous protein (CHOP) protein abundance and c-Jun NH2-terminal kinase activation. Our findings suggest that betaine might serve as a safe and efficacious therapeutic tool for NAFLD by improving adipose tissue function.


Nutrients ◽  
2018 ◽  
Vol 10 (2) ◽  
pp. 131 ◽  
Author(s):  
Jingjing Du ◽  
Linyuan Shen ◽  
Zhendong Tan ◽  
Peiwen Zhang ◽  
Xue Zhao ◽  
...  

2015 ◽  
Vol 113 (12) ◽  
pp. 1835-1843 ◽  
Author(s):  
Li Xu ◽  
Danping Huang ◽  
Qiaolin Hu ◽  
Jing Wu ◽  
Yizhen Wang ◽  
...  

To assess the effects of betaine on hepatic lipid accumulation and investigate the underlying mechanism, thirty-two male Sprague–Dawley rats weighing 100 (sd 2·50) g were divided into four groups, and started on one of four treatments: basal diet, basal diet with betaine administration, high-fat diet and high-fat diet with betaine administration. The results showed that no significant difference of body weight was found among experimental groups. Compared with high-fat diet-fed rats, a betaine supplementation decreased (P< 0·05) hepatic TAG accumulation induced by high-fat diet, which was also supported by hepatic histology results. Additionally, hepatic betaine–homocysteine methyltransferase activity as well as its mRNA abundance and lecithin level were found increased (P< 0·05) by betaine supplementation in both basal diet-fed rats and high-fat diet-fed rats. Betaine administration in high-fat diet-fed rats exhibited a higher (P< 0·05) activity of hepatic carnitine palmitoyltransferase 1 (CPT1) compared with high-fat diet-fed rats. High-fat diet inhibited (P< 0·05) the gene expression of hepatic PPARα and CPT1. However, betaine administration in high-fat diet-fed rats elevated (P< 0·05) the gene expression of PPARα and CPT1. Moreover, concentration, gene and protein expressions of hepatic fibroblast growth factor 21 (FGF21) were increased (P< 0·05) in response to betaine administration in high-fat diet group; meanwhile the gene expression of hepatic AMP-activated protein kinase was increased (P< 0·05) as well. The results suggest that betaine administration enhanced hepatic lipid export and fatty acid oxidation in high-fat diet-fed rats, thus effectively alleviating fat accumulation in the liver.


2019 ◽  
Vol 89 (1-2) ◽  
pp. 45-54
Author(s):  
Akemi Suzuki ◽  
André Manoel Correia-Santos ◽  
Gabriela Câmara Vicente ◽  
Luiz Guillermo Coca Velarde ◽  
Gilson Teles Boaventura

Abstract. Objective: This study aimed to evaluate the effect of maternal consumption of flaxseed flour and oil on serum concentrations of glucose, insulin, and thyroid hormones of the adult female offspring of diabetic rats. Methods: Wistar rats were induced to diabetes by a high-fat diet (60%) and streptozotocin (35 mg/kg). Rats were mated and once pregnancy was confirmed, were divided into the following groups: Control Group (CG): casein-based diet; High-fat Group (HG): high-fat diet (49%); High-fat Flaxseed Group (HFG): high-fat diet supplemented with 25% flaxseed flour; High-fat Flaxseed Oil group (HOG): high-fat diet, where soya oil was replaced with flaxseed oil. After weaning, female pups (n = 6) from each group were separated, received a commercial rat diet and were sacrificed after 180 days. Serum insulin concentrations were determined by ELISA, the levels of triiodothyronine (T3), thyroxine (T4) and thyroid-stimulating hormone (TSH) were determined by chemiluminescence. Results: There was a significant reduction in body weight at weaning in HG (−31%), HFG (−33%) and HOG (44%) compared to CG (p = 0.002), which became similar by the end of 180 days. Blood glucose levels were reduced in HFG (−10%, p = 0.044) when compared to CG, and there was no significant difference between groups in relation to insulin, T3, T4, and TSH after 180 days. Conclusions: Maternal severe hyperglycemia during pregnancy and lactation resulted in a microsomal offspring. Maternal consumption of flaxseed reduces blood glucose levels in adult offspring without significant effects on insulin levels and thyroid hormones.


Obesity ◽  
2012 ◽  
Author(s):  
Gong-Rak Lee ◽  
Mi Kyung Shin ◽  
Dong-Joon Yoon ◽  
Ah-Ram Kim ◽  
Rina Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document