Effects of ellagitannin-rich berries on blood lipids, gut microbiota, and urolithin production in human subjects with symptoms of metabolic syndrome

2013 ◽  
Vol 57 (12) ◽  
pp. 2258-2263 ◽  
Author(s):  
Riitta Puupponen-Pimiä ◽  
Tuulikki Seppänen-Laakso ◽  
Matti Kankainen ◽  
Johanna Maukonen ◽  
Riitta Törrönen ◽  
...  
2021 ◽  
pp. 2001048
Author(s):  
Adrián Cortés‐Martín ◽  
Carlos Eduardo Iglesias‐Aguirre ◽  
Amparo Meoro ◽  
María Victoria Selma ◽  
Juan Carlos Espín

2015 ◽  
Vol 9 (2) ◽  
pp. 158-167 ◽  
Author(s):  
Dhananjay Yadav ◽  
Meerambika Mishra ◽  
Anish Zacharia Joseph ◽  
Senthil Kumar Subramani ◽  
Sunil Mahajan ◽  
...  

Nature ◽  
2016 ◽  
Vol 536 (7615) ◽  
pp. 238-238 ◽  
Author(s):  
Benoit Chassaing ◽  
Omry Koren ◽  
Julia K. Goodrich ◽  
Angela C. Poole ◽  
Shanthi Srinivasan ◽  
...  

2022 ◽  
Vol 11 (1) ◽  
pp. 11-21
Author(s):  
Hui Ma ◽  
Yaozhong Hu ◽  
Bowei Zhang ◽  
Zeping Shao ◽  
Eugeni Roura ◽  
...  

2021 ◽  
Author(s):  
Ruiqiu Zhao ◽  
Yang Ji ◽  
Xin Chen ◽  
Qiuhui Hu ◽  
Liyan Zhao

Natural biological macromolecules with putative functions of gut microbiota regulation possesses the advantage in improving metabolic syndrome (MS). In this research, we aimed to determine the effects of Flammulina velutipes...


2018 ◽  
Vol 9 ◽  
Author(s):  
Keng Po Lai ◽  
Alice Hoi-Man Ng ◽  
Hin Ting Wan ◽  
Aman Yi-Man Wong ◽  
Cherry Chi-Tim Leung ◽  
...  

2020 ◽  
Vol 6 (1) ◽  
pp. eaax6208 ◽  
Author(s):  
Su-Ling Zeng ◽  
Shang-Zhen Li ◽  
Ping-Ting Xiao ◽  
Yuan-Yuan Cai ◽  
Chu Chu ◽  
...  

Metabolic syndrome (MetS) is intricately linked to dysregulation of gut microbiota and host metabolomes. Here, we first find that a purified citrus polymethoxyflavone-rich extract (PMFE) potently ameliorates high-fat diet (HFD)–induced MetS, alleviates gut dysbiosis, and regulates branched-chain amino acid (BCAA) metabolism using 16S rDNA amplicon sequencing and metabolomic profiling. The metabolic protective effects of PMFE are gut microbiota dependent, as demonstrated by antibiotic treatment and fecal microbiome transplantation (FMT). The modulation of gut microbiota altered BCAA levels in the host serum and feces, which were significantly associated with metabolic features and actively responsive to therapeutic interventions with PMFE. Notably, PMFE greatly enriched the commensal bacterium Bacteroides ovatus, and gavage with B. ovatus reduced BCAA concentrations and alleviated MetS in HFD mice. PMFE may be used as a prebiotic agent to attenuate MetS, and target-specific microbial species may have unique therapeutic promise for metabolic diseases.


2019 ◽  
Vol 8 (2) ◽  
pp. 95-99
Author(s):  
Ermina Bach ◽  
Niels Møller ◽  
Jens Otto L Jørgensen ◽  
Mads Buhl ◽  
Holger Jon Møller

Aims/hypothesis The macrophage-specific glycoprotein sCD163 has emerged as a biomarker of low-grade inflammation in the metabolic syndrome and related disorders. High sCD163 levels are seen in acute sepsis as a result of direct lipopolysaccharide-mediated shedding of the protein from macrophage surfaces including Kupffer cells. The aim of this study was to investigate if low-grade endotoxinemia in human subjects results in increasing levels of sCD163 in a cortisol-dependent manner. Methods We studied eight male hypopituitary patients and eight age- and gender-matched healthy controls during intravenous low-dose LPS or placebo infusion administered continuously over 360 min. Furthermore, we studied eight healthy volunteers with bilateral femoral vein and artery catheters during a 360-min infusion with saline and low-dose LPS in each leg respectively. Results: Systemic low-grade endotoxinemia resulted in a gradual increase in sCD163 from 1.65 ± 0.51 mg/L (placebo) to 1.92 ± 0.46 mg/L (LPS) at 220 min, P = 0.005 and from 1.66 ± 0.42 mg/L (placebo) to 2.19 ± 0.56 mg/L (LPS) at 340 min, P = 0.006. A very similar response was observed in hypopituitary patients: from 1.59 ± 0.53 mg/L (placebo) to 1.83 ± 0.45 mg/L (LPS) at 220 min, P = 0.021 and from 1.52 ± 0.53 mg/L (placebo) to 2.03 ± 0.44 mg/L (LPS) at 340 min, P < 0.001. As opposed to systemic treatment, continuous femoral artery infusion did not result in increased sCD163. Conclusion: Systemic low-grade endotoxinemia resulted in increased sCD163 to levels seen in the metabolic syndrome in both controls and hypopituitary patients. This suggests a direct and cortisol-independent effect of LPS on the shedding of sCD163. We observed no effect of local endotoxinemia on levels of serum sCD163.


2021 ◽  
Author(s):  
Jielong Guo ◽  
Xue Han ◽  
Yilin You ◽  
Weidong Huang ◽  
Zhan Jicheng

Abstract BackgroundLow-dose antibiotic contamination in animal food is still a severe food safety problem worldwide. Penicillin is one of the main classes of antibiotics being detected in food. Previous studies have shown that transient exposure of low-dose penicillin (LDP) during early life resulted in metabolic syndrome (MetS) in mice. However, the underlying mechanism(s) and efficient approaches to counteracting this are largely unknown.MethodsWild-type (WT) or secretory IgA (SIgA)-deficient (Pigr-/-) C57BL/6 mice were exposed to LDP or not from several days before birth to 30 d of age. Five times of FMT or probiotics (a mixture of Lactobacillus bulgaricus and L. rhamnosus GG) treatments were applied to parts of these LDP-treated mice from 12 d to 28 d of life. Bacterial composition from different regions (mucosa and lumen) of the colon and ileum were analyzed through 16S rDNA sequencing. Intestinal IgA response was analyzed. Multiple parameters related to MetS were also determined. In addition, germ-free animals and in vitro tissue culture were also used to determine the correlations between LDP, gut microbiota (GM) and intestinal IgA response.ResultsLDP disturbed the intestinal bacterial composition, especially for ileal mucosa, the main inductive and effective sites of IgA response, in 30-d-old mice. The alteration of early GM resulted in a persistent inhibition of the intestinal IgA response, leading to a constant reduction of fecal and caecal SIgA levels throughout the 25-week experiment, which is early life-dependent, as transfer of LDP-GM to 30 d germ-free mice only resulted in a transient reduction in fecal SIgA. LDP-induced reduction in SIgA led to a decrease in IgA+ bacteria and a dysbiosis in the ileal mucosal samples of 25 week wild-type but not Pigr-/- mice. Moreover, LDP also resulted in increases in ileal bacterial encroachment and adipose inflammation, along with an enhancement of diet-induced MetS in an intestinal SIgA-dependent manner. Furthermore, several times of FMT or probiotic treatments during LDP treatment are efficient to fully (for FMT) or partially (for probiotics) counteract the LDP-effect on both GM and metabolism.ConclusionsEarly-life LDP-induced enhancement of diet-induced MetS is mediated by intestinal SIgA, which could be (partially) restored by FMT or probiotics treatment.


Sign in / Sign up

Export Citation Format

Share Document