Sleeve monopole antennas at the center of a circular ground plane

2003 ◽  
Vol 38 (4) ◽  
pp. 341-343 ◽  
Author(s):  
Jingli Guo ◽  
Yicai Ji ◽  
Qizhong Liu
2002 ◽  
Vol 38 (16) ◽  
pp. 849 ◽  
Author(s):  
H. Xin ◽  
K. Matsugatani ◽  
M. Kim ◽  
J. Hacker ◽  
J.A. Higgins ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Chia-Hao Wu ◽  
Jwo-Shiun Sun ◽  
Bo-Shiun Lu

This paper presents a compact four-element multiple-input–multiple-output (MIMO) antenna design operating within the WiFi 802.11 ac bands (5.2–5.84 GHz) for a smartwatch. The antenna is fabricated using a polyamide substrate and embedded into the strap of a smartwatch model; the strap is created using three-dimensional etching of plastic materials. The four-element MIMO antenna is formed by four monopole antennas, has a simple structure, and is connected to the system ground plane of the smartwatch. Due to the stub and notched block between two antennas and the slit in the system ground, the four-element MIMO antenna exhibits favorable isolation. Moreover, the envelope correlation coefficient of the antennas is considerably lower than 0.005 in the operating band. The measured −6 dB impedance bandwidths of the four elements of the antenna (Ant1–Ant4) with the human wrist encompass the WiFi 802.11 ac range of 5.2–5.84 GHz; moreover, an isolation of more than 20 dB is achieved. The measured antenna efficiency with and without a phantom hand are 45%–55% and 93%–97%, respectively.


Author(s):  
P Syam Sundar ◽  
Sarat K Kotamraju ◽  
B T P Madhav ◽  
M Sreehari ◽  
K Raghavendra Rao ◽  
...  

In this article a parasitic strip loaded monopole antennas are designed to notch dual and triple bands. The designed models are constructed on one side of the substrate material and on the other end defected ground structures are implemented. The basic antenna comprises a tuning stub and a ground plane with tapered shape slot as DGS. Another model is constructed with circular monopole radiating element on front side and similar kind of ground structure used in the basic rectangular tuning stub antenna. To create notched bands with tuning stubs, two symmetrical parasitic slits are placed inside the slot of the ground plane. The basic model is of the rectangular stub notching triple band and the circular tuning stub antenna notching dual band. Dual band notched circular tuning stub antenna is prototyped on FR4 substrate and measured results from vector network analyzer are compared with simulation results of HFSS for validation.


A MIMO antenna with micro strip fed ultra wide band nature with characteristics of single band notching is presented in this paper. MIMO antenna has two monopole antennas. Larger impedance bandwidth is obtained by providing slots beside the feed line on ground plane. By using parasitic element on back side of patch band notching characteristics cab be obtained. Here, antenna size is 44x22x1.6 mm3 . This antenna operates over the frequency band 4GHz to 11GHz with notched frequency band 5.1GHz to 5.9GHz. By keeping two monopole antennas perpendicular to each other, isolation of less than - 15dB is obtained and good value of ECC is obtained.


ACS Nano ◽  
2012 ◽  
Vol 6 (9) ◽  
pp. 8226-8232 ◽  
Author(s):  
Hakkı Acar ◽  
Toon Coenen ◽  
Albert Polman ◽  
Laurens Kobus Kuipers

Author(s):  
N.SURESH BABU

In this paper we have investigated printed monopole antennas, which is basically a printed micro strip antenna with etched ground plane for multi-band applications. In particular we have fabricated and tested printed monopole antennas for L-band and S-band applications. Printed rectangular monopole antennas are studied first for L-band applications. In high performance aircraft, spacecraft, satellite, missile and consumer electronics applications, where weight, cost, performance, ease of installation, and aerodynamic profile are constraints, low profile antennas may be required. Presently there are many other government and commercial applications, such as mobile radio and wireless communications that have similar specification. To meet these requirements, micro strip patch antennas can be used. These antennas are low profile, conformable to planar and non planar surfaces, simple and inexpensive to manufacture. In this thesis mainly we have designed Rectangular printed monopole antenna and U-shape Printed monopole antennas for L-band and S-bands applications. The final structures are presented in this report after doing an extensive simulation study and analysis and presented relevant results.


2021 ◽  
Vol 112 ◽  
pp. 239-250
Author(s):  
Nurhayati Nurhayati ◽  
Alexandre Manicoba De-Oliveira ◽  
Warangkana Chaihongsa ◽  
Bagus Edy Sukoco ◽  
Akbar Kurnia Saleh

Sign in / Sign up

Export Citation Format

Share Document