Fiber strain sensor based on compact in‐line air cavity fabricated by conventional single mode fiber

Author(s):  
Jiaxuan Fan ◽  
Wenyu Li ◽  
Yuhao Liu ◽  
Shuxin Yang ◽  
Jin Li
Sensors ◽  
2017 ◽  
Vol 17 (3) ◽  
pp. 555 ◽  
Author(s):  
Lu Yan ◽  
Zhiguo Gui ◽  
Guanjun Wang ◽  
Yongquan An ◽  
Jinyu Gu ◽  
...  

A high-sensitivity, low-cost, ultrathin, hollow fiber micro bubble structure was proposed; such a bubble can be used to develop a high-sensitivity strain sensor based on a Fabry–Perot interferometer (FPI). The micro bubble is fabricated at the fiber tip by splicing a glass tube to a single mode fiber (SMF) and then the glass tube is filled with gas in order to expand and form a micro bubble. The sensitivity of the strain sensor with a cavity length of about 155 μm and a bubble wall thickness of about 6 μm was measured to be up to 8.14 pm/μϵ.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4530
Author(s):  
Yanping Chen ◽  
Junxian Luo ◽  
Shen Liu ◽  
Mengqiang Zou ◽  
Shengzhen Lu ◽  
...  

We demonstrate a high-strength strain sensor based on a micro-air-cavity reshaped through repeating arc discharge. The strain sensor has a micro-scale cavity, approximate plane reflection, and large wall thickness, contributing to a broad free spectrum range ~36 nm at 1555 nm, high fringe contrast ~38 dB, and super-high mechanical robustness, respectively. A sensitivity of ~2.39 pm/με and a large measurement range of 0 to 9800 με are achieved for this strain sensor. The strain sensor has a high strength, e.g., the tensile strain applied the sensor is up to 10,000 με until the tested the single-mode fiber is broken into two sections. In addition, it exhibited low thermal sensitivity of less than 1.0 pm/°C reducing the cross-sensitivity between tensile strain and temperature.


2010 ◽  
Vol 49 (3) ◽  
pp. 536 ◽  
Author(s):  
Agus Muhamad Hatta ◽  
Yuliya Semenova ◽  
Qiang Wu ◽  
Gerald Farrell

2016 ◽  
Vol 8 (1) ◽  
pp. 1-6 ◽  
Author(s):  
S. E. F. Masnan ◽  
A. Z. Zulkifli ◽  
N. M. Azmi ◽  
S. M. Akib ◽  
H. A. Razak ◽  
...  

2002 ◽  
Vol 722 ◽  
Author(s):  
T. S. Sriram ◽  
B. Strauss ◽  
S. Pappas ◽  
A. Baliga ◽  
A. Jean ◽  
...  

AbstractThis paper describes the results of extensive performance and reliability characterization of a silicon-based surface micro-machined tunable optical filter. The device comprises a high-finesse Fabry-Perot etalon with one flat and one curved dielectric mirror. The curved mirror is mounted on an electrostatically actuated silicon nitride membrane tethered to the substrate using silicon nitride posts. A voltage applied to the membrane allows the device to be tuned by adjusting the length of the cavity. The device is coupled optically to an input and an output single mode fiber inside a hermetic package. Extensive performance characterization (over operating temperature range) was performed on the packaged device. Parameters characterized included tuning characteristics, insertion loss, filter line-width and side mode suppression ratio. Reliability testing was performed by subjecting the MEMS structure to a very large number of actuations at an elevated temperature both inside the package and on a test board. The MEMS structure was found to be extremely robust, running trillions of actuations without failures. Package level reliability testing conforming to Telcordia standards indicated that key device parameters including insertion loss, filter line-width and tuning characteristics did not change measurably over the duration of the test.


2021 ◽  
Vol 395 ◽  
pp. 127226
Author(s):  
Jun Guo ◽  
Xiao Hu ◽  
Jie Ma ◽  
Luming Zhao ◽  
Deyuan Shen ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Georg Rademacher ◽  
Benjamin J. Puttnam ◽  
Ruben S. Luís ◽  
Tobias A. Eriksson ◽  
Nicolas K. Fontaine ◽  
...  

AbstractData rates in optical fiber networks have increased exponentially over the past decades and core-networks are expected to operate in the peta-bit-per-second regime by 2030. As current single-mode fiber-based transmission systems are reaching their capacity limits, space-division multiplexing has been investigated as a means to increase the per-fiber capacity. Of all space-division multiplexing fibers proposed to date, multi-mode fibers have the highest spatial channel density, as signals traveling in orthogonal fiber modes share the same fiber-core. By combining a high mode-count multi-mode fiber with wideband wavelength-division multiplexing, we report a peta-bit-per-second class transmission demonstration in multi-mode fibers. This was enabled by combining three key technologies: a wideband optical comb-based transmitter to generate highly spectral efficient 64-quadrature-amplitude modulated signals between 1528 nm and 1610 nm wavelength, a broadband mode-multiplexer, based on multi-plane light conversion, and a 15-mode multi-mode fiber with optimized transmission characteristics for wideband operation.


Sign in / Sign up

Export Citation Format

Share Document