scholarly journals Eight‐channel parallel transmit‐receive system for 7 T MRI with optically controlled and monitored on‐coil current‐mode RF amplifiers

2020 ◽  
Vol 84 (6) ◽  
pp. 3494-3501
Author(s):  
Natalia Gudino ◽  
Jacco A. Zwart ◽  
Jeff H. Duyn

2010 ◽  
Vol 46 (13) ◽  
pp. 894 ◽  
Author(s):  
G.T. Watkins


1990 ◽  
Vol 137 (2) ◽  
pp. 61 ◽  
Author(s):  
Chris Toumazou ◽  
John Lidgey ◽  
Brett Wilson


2018 ◽  
Vol 138 (5) ◽  
pp. 453-462
Author(s):  
Jun-ichi Itoh ◽  
Tomokazu Sakuraba ◽  
Hoai Nam Le ◽  
Hiroki Watanabe ◽  
Keisuke Kusaka


2017 ◽  
Vol E100.C (6) ◽  
pp. 539-547 ◽  
Author(s):  
Tohru KANEKO ◽  
Yuya KIMURA ◽  
Masaya MIYAHARA ◽  
Akira MATSUZAWA


2020 ◽  
Vol 38 (8A) ◽  
pp. 1137-1142
Author(s):  
Baqer A. Ahmed ◽  
Saad K. Shather ◽  
Wisam K. Hamdan

In this paper the Magnetic Abrasive Finishing (MAF) was utilized after Single Point Incremental Forming (SPIF) process as a combined finishing process. Firstly, the Single Point Incremental forming was form the truncated cone made from low carbon steel (1008-AISI) based on Z-level tool path then the magnetic abrasive finishing process was applied on the surface of the formed product. Box-Behnken design of experiment in Minitab 17 software was used in this study. The influences of different parameters (feed rate, machining step size, coil current and spindle speed) on change in Micro-Vickers hardness were studied. The maximum and minimum change in Micro-Vickers hardness that achieved from all the experiments were (40.4 and 1.1) respectively. The contribution percent of (feed rate, machining step size, coil current and spindle speed) were (7.1, 18.068, 17.376 and 37.894) % respectively. After MAF process all the micro surface cracks that generated on the workpiece surface was completely removed from the surface.



1988 ◽  
Author(s):  
Siep Onneweer ◽  
Hans Kerkhoff ◽  
Jon Butler


2020 ◽  
Vol 10 (6) ◽  
pp. 902-908
Author(s):  
Syed Zahiruddin ◽  
Avireni Srinivasulu ◽  
Musala Sarada

Objective: The interest concern towards the development of enabling technology towards new current mode devices has forced the designers and researchers for the invention of devices, which has having the characteristics like such as low power, robustness, compactness, efficiency and scalability. Methods: Second Generation Current Controlled Conveyor (CCCII) is the prevailing current mode device of the times today. Since its invention by A. Fabre, it has prominent applications in the field of analog signal processing and in biomedical applications too. In this manuscript, CCCII is used as an enabling device to design a Frequency Shift Keying (FSK) Generator. Results: The proposed topology is designed using a single active device CCCII with least passive components. The circuit enjoys the features of like electronic tunability of frequency using the bias current. Conclusion: It can be concluded that the FSK generator circuit designed using single CCCII confers better results in contrast to the existing structures. The maximum power consumption is 0.196 mW. The proposed circuit has the benefit of simple configuration, which is very much proficient for IC fabrication.



Author(s):  
Yong-An Li

Background: The original filter including grounded or virtual ground capacitors can be synthesized by using the NAM expansion. However, so far the filters including floating capacitor, such as Sallen-Key filter, have not been synthesized by means of the NAM expansion. This is a problem to be researched further. Methods: By using the adjoint network theory, the Sallen-Key filter including floating capacitor first is turned into a current-mode one, which includes a grounded capacitor and a virtual ground capacitor. Then the node admittance matrix, after derived, is extended by using NAM expansion. Results: At last, one VDTA Sallen-Key filter is received. It employs single compact VDTA and two grounded capacitors. Conclusion: A Butterworth VDTA second-order frequency filter based on Sallen-Key topology with fo = 100kHz, HLP = -HBP=1, is designed.



Author(s):  
Priyanka Gupta ◽  
Kunal Gupta ◽  
Neeta Pandey ◽  
Rajeshwari Pandey

This paper presents a novel method to realize a current mode instrumentation amplifier (CMIA) through CDBA (Current difference Buffered Amplifier). It employs two CDBAs and two resistors to obtain desired functionality. Further, it does not require any resistor matching. The gain can be set according to the resistor values. It offers high differential gain and a bandwidth, which is independent of gain. The working of the circuit is verified through PSPICE simulations using CFOA IC based CDBA realization.



Sign in / Sign up

Export Citation Format

Share Document