scholarly journals A review of calibrated blood oxygenation level-dependent (BOLD) methods for the measurement of task-induced changes in brain oxygen metabolism

2012 ◽  
Vol 26 (8) ◽  
pp. 987-1003 ◽  
Author(s):  
Nicholas P. Blockley ◽  
Valerie E. M. Griffeth ◽  
Aaron B. Simon ◽  
Richard B. Buxton
2009 ◽  
Vol 30 (4) ◽  
pp. 1120-1132 ◽  
Author(s):  
Beau M. Ances ◽  
Christine L. Liang ◽  
Oleg Leontiev ◽  
Joanna E. Perthen ◽  
Adam S. Fleisher ◽  
...  

2021 ◽  
pp. 0271678X2110645
Author(s):  
Pieter T Deckers ◽  
Alex A Bhogal ◽  
Mathijs BJ Dijsselhof ◽  
Carlos C Faraco ◽  
Peiying Liu ◽  
...  

Blood oxygenation level-dependent (BOLD) or arterial spin labeling (ASL) MRI with hypercapnic stimuli allow for measuring cerebrovascular reactivity (CVR). Hypercapnic stimuli are also employed in calibrated BOLD functional MRI for quantifying neuronally-evoked changes in cerebral oxygen metabolism (CMRO2). It is often assumed that hypercapnic stimuli (with or without hyperoxia) are iso-metabolic; increasing arterial CO2 or O2 does not affect CMRO2. We evaluated the null hypothesis that two common hypercapnic stimuli, ‘CO2 in air’ and carbogen, are iso-metabolic. TRUST and ASL MRI were used to measure the cerebral venous oxygenation and cerebral blood flow (CBF), from which the oxygen extraction fraction (OEF) and CMRO2 were calculated for room-air, ‘CO2 in air’ and carbogen. As expected, CBF significantly increased (9.9% ± 9.3% and 12.1% ± 8.8% for ‘CO2 in air’ and carbogen, respectively). CMRO2 decreased for ‘CO2 in air’ (−13.4% ± 13.0%, p < 0.01) compared to room-air, while the CMRO2 during carbogen did not significantly change. Our findings indicate that ‘CO2 in air’ is not iso-metabolic, while carbogen appears to elicit a mixed effect; the CMRO2 reduction during hypercapnia is mitigated when including hyperoxia. These findings can be important for interpreting measurements using hypercapnic or hypercapnic-hyperoxic (carbogen) stimuli.


Sign in / Sign up

Export Citation Format

Share Document