A semi-discrete shell finite element for textile composite reinforcement forming simulation

2009 ◽  
Vol 79 (12) ◽  
pp. 1443-1466 ◽  
Author(s):  
N. Hamila ◽  
P. Boisse ◽  
F. Sabourin ◽  
M. Brunet
Author(s):  
Nahiene Hamila ◽  
Fabrice Hélénon ◽  
Philippe Boisse ◽  
Sylvain Chatel

The numerical simulation of composite forming permits to envisage the feasibility of a process without defect but also to know the directions of the reinforcements after shaping. These directions condition strongly the mechanical behaviour of the final textile composite structure. In addition, the angles between warp and weft yarns influence the permeability of the reinforcement and thus the filling of the resin in the case of a liquid moulding process. The forming of composite reinforcement can be made on a single ply or simultaneously on several plies. In this paper the different approaches for the textile reinforcement forming simulation are described. A three node element with arbitrary directions of the yarns with regard to the element sides is presented and used for the simultaneous hemispherical forming of three layers.


2014 ◽  
Vol 81 (8) ◽  
Author(s):  
Wu Xu ◽  
Anthony M. Waas

A shell element for analysis of textile composite structures is proposed in this paper. Based on the embedded element method and solid shell concept, the architecture, geometry, and material properties of a repeat unit cell (RUC) of textile composite are embedded in a single shell finite element. Flat and curved textile composite structures are used to apply and verify the present shell element. The deformation and natural frequency obtained by the present shell element are compared against those computed from full three-dimensional finite element analyses. It is shown that the proposed shell element is efficient, simple, and reliable for textile composite structural analysis.


2019 ◽  
Author(s):  
Miguel Abambres ◽  
Dinar Camotim ◽  
Miguel Abambres

A 2nd order inelastic Generalised Beam Theory (GBT) formulation based on the J2 flow theory is proposed, being a promising alternative to the shell finite element method. Its application is illustrated for an I-section beam and a lipped-C column. GBT results were validated against ABAQUS, namely concerning equilibrium paths, deformed configurations, and displacement profiles. It was concluded that the GBT modal nature allows (i) precise results with only 22% of the number of dof required in ABAQUS, as well as (ii) the understanding (by means of modal participation diagrams) of the behavioral mechanics in any elastoplastic stage of member deformation .


2018 ◽  
Author(s):  
Miguel Abambres

Original Generalized Beam Theory (GBT) formulations for elastoplastic first and second order (postbuckling) analyses of thin-walled members are proposed, based on the J2 theory with associated flow rule, and valid for (i) arbitrary residual stress and geometric imperfection distributions, (ii) non-linear isotropic materials (e.g., carbon/stainless steel), and (iii) arbitrary deformation patterns (e.g., global, local, distortional, shear). The cross-section analysis is based on the formulation by Silva (2013), but adopts five types of nodal degrees of freedom (d.o.f.) – one of them (warping rotation) is an innovation of present work and allows the use of cubic polynomials (instead of linear functions) to approximate the warping profiles in each sub-plate. The formulations are validated by presenting various illustrative examples involving beams and columns characterized by several cross-section types (open, closed, (un) branched), materials (bi-linear or non-linear – e.g., stainless steel) and boundary conditions. The GBT results (equilibrium paths, stress/displacement distributions and collapse mechanisms) are validated by comparison with those obtained from shell finite element analyses. It is observed that the results are globally very similar with only 9% and 21% (1st and 2nd order) of the d.o.f. numbers required by the shell finite element models. Moreover, the GBT unique modal nature is highlighted by means of modal participation diagrams and amplitude functions, as well as analyses based on different deformation mode sets, providing an in-depth insight on the member behavioural mechanics in both elastic and inelastic regimes.


Sign in / Sign up

Export Citation Format

Share Document