Single point incremental forming simulation with an enhanced assumed strain solid-shell finite element formulation

2010 ◽  
Vol 3 (S1) ◽  
pp. 963-966 ◽  
Author(s):  
J. I. V. Sena ◽  
R. J. Alves de Sousa ◽  
R. A. F. Valente
2012 ◽  
Vol 504-506 ◽  
pp. 913-918 ◽  
Author(s):  
Carlos Felipe Guzmán ◽  
Amine Ben Bettaieb ◽  
José Ilídio Velosa de Sena ◽  
Ricardo J. Alves de Sousa ◽  
Anne Marie Habraken ◽  
...  

Single Point Incremental Forming (SPIF) is a recent sheet forming process which can give a symmetrical or asymmetrical shape by using a small tool. Without the need of dies, the SPIF is capable to deal with rapid prototyping and small batch productions at low cost. Extensive research from both experimental and numerical sides has been carried out in the last years. Recent developments in the finite element simulations for sheet metal forming have allowed new modeling techniques, such as the Solid Shell elements, which combine the main features of shell hypothesis with a solid-brick element. In this article, two recently developed elements -SSH3D element [1, 2] and RESS3 element [3]- implemented in Lagamine (finite element code developed by the ArGEnCo department of the University of Liège) are explained and evaluated using the SPIF line test. To avoid locking problems, the well-known Enhanced Assumed Strain (EAS) and Assumed Natural Strain (ANS) techniques are used. The influence of the different EAS and ANS parameters are analized comparing the predicted tool forces and the shape of a transversal cut, at the end of the process. The results show a strong influence of the EAS in the forces prediction, proving that a correct choice is fundamental for an accurate simulation of the SPIF using Solid Shell elements.


2013 ◽  
Vol 549 ◽  
pp. 180-188 ◽  
Author(s):  
Laurent Duchêne ◽  
Carlos Felipe Guzmán ◽  
Amar Kumar Behera ◽  
Joost R. Duflou ◽  
Anne Marie Habraken

Single Point Incremental Forming (SPIF) is an interesting manufacturing process due to its dieless nature and its increased formability compared to conventional forming processes. Nevertheless, the process suffers from large geometric deviations when compared to the original CAD profile. One particular example arises when analyzing a truncated two-slope pyramid [. In this paper, a finite element simulation of this geometry is carried out using a newly implemented solid-shell element [, which is based on the Enhanced Assumed Strain (EAS) and the Assumed Natural Strain (ANS) techniques. The model predicts the shape of the pyramid very well, correctly representing the springback and the through thickness shear (TTS). Besides, the effects of the finite element mesh refinement, the EAS and ANS techniques on the numerical prediction are presented. It is shown that the EAS modes included in the model have a significant influence on the accuracy of the results.


2016 ◽  
Vol 33 (5) ◽  
pp. 1388-1421 ◽  
Author(s):  
José I.V. Sena ◽  
Cedric Lequesne ◽  
L Duchene ◽  
Anne-Marie Habraken ◽  
Robertt A.F. Valente ◽  
...  

Purpose – Numerical simulation of the single point incremental forming (SPIF) processes can be very demanding and time consuming due to the constantly changing contact conditions between the tool and the sheet surface, as well as the nonlinear material behaviour combined with non-monotonic strain paths. The purpose of this paper is to propose an adaptive remeshing technique implemented in the in-house implicit finite element code LAGAMINE, to reduce the simulation time. This remeshing technique automatically refines only a portion of the sheet mesh in vicinity of the tool, therefore following the tool motion. As a result, refined meshes are avoided and consequently the total CPU time can be drastically reduced. Design/methodology/approach – SPIF is a dieless manufacturing process in which a sheet is deformed by using a tool with a spherical tip. This dieless feature makes the process appropriate for rapid-prototyping and allows for an innovative possibility to reduce overall costs for small batches, since the process can be performed in a rapid and economic way without expensive tooling. As a consequence, research interest related to SPIF process has been growing over the last years. Findings – In this work, the proposed automatic refinement technique is applied within a reduced enhanced solid-shell framework to further improve numerical efficiency. In this sense, the use of a hexahedral finite element allows the possibility to use general 3D constitutive laws. Additionally, a direct consideration of thickness variations, double-sided contact conditions and evaluation of all components of the stress field are available with solid-shell and not with shell elements. Additionally, validations by means of benchmarks are carried out, with comparisons against experimental results. Originality/value – It is worth noting that no previous work has been carried out using remeshing strategies combined with hexahedral elements in order to improve the computational efficiency resorting to an implicit scheme, which makes this work innovative. Finally, it has been shown that it is possible to perform accurate and efficient finite element simulations of SPIF process, resorting to implicit analysis and continuum elements. This is definitively a step-forward on the state-of-art in this field.


2014 ◽  
Vol 17 (1) ◽  
pp. 21-28
Author(s):  
Dien Khanh Le ◽  
Nam Thanh Nguyen ◽  
Binh Thien Nguyen

Single Point Incremental Forming (SPIF) has become popular for metal sheet forming technology in industry in many advanced countries. In the recent decade, there were lots of related studies that have concentrated on this new technology by Finite Element Method as well as by empirical practice. There have had very rare studies by pure analytical theory and almost all these researches were based on the formula of ISEKI. However, we consider that this formula does not reflect yet the mechanics of destruction of the sheet work piece as well as the behavior of the sheet in reality. The main aim of this paper is to examine ISEKI’s formula and to suggest a new analytical computation of three elements of stresses at any random point on the sheet work piece. The suggested formula is carefully verified by the results of Finite Element Method simulation.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6794
Author(s):  
Zhou Yan ◽  
Hany Hassanin ◽  
Mahmoud Ahmed El-Sayed ◽  
Hossam Mohamed Eldessouky ◽  
Joy Rizki Pangestu Djuansjah ◽  
...  

Single-point incremental forming (SPIF) is a flexible technology that can form a wide range of sheet metal products without the need for using punch and die sets. As a relatively cheap and die-less process, this technology is preferable for small and medium customised production. However, the SPIF technology has drawbacks, such as the geometrical inaccuracy and the thickness uniformity of the shaped part. This research aims to optimise the formed part geometric accuracy and reduce the processing time of a two-stage forming strategy of SPIF. Finite element analysis (FEA) was initially used and validated using experimental literature data. Furthermore, the design of experiments (DoE) statistical approach was used to optimise the proposed two-stage SPIF technique. The mass scaling technique was applied during the finite element analysis to minimise the computational time. The results showed that the step size during forming stage two significantly affected the geometrical accuracy of the part, whereas the forming depth during stage one was insignificant to the part quality. It was also revealed that the geometrical improvement had taken place along the base and the wall regions. However, the areas near the clamp system showed minor improvements. The optimised two-stage strategy successfully decreased both the geometrical inaccuracy and processing time. After optimisation, the average values of the geometrical deviation and forming time were reduced by 25% and 55.56%, respectively.


Author(s):  
Matteo Benedetti ◽  
Vigilio Fontanari ◽  
Bernardo Monelli ◽  
Marco Tassan

In this article, the single-point incremental forming of sheet metals made of micro-alloyed steel and Al alloy is investigated by combining the results of numerical simulation and experimental characterization, performed during the process, as well as on the final product. A finite element model was developed to perform the process simulation, based on an explicit dynamic time integration scheme. The finite element outcomes were validated by comparison with experimental results. In particular, forming forces during the process, as well as the final shape and strain distribution on the finished component, were measured. The obtained results showed the capability of the finite element modelling to predict the material deformation process. This can be considered as a starting point for the reliable definition of the single-point incremental forming process parameters, thus avoiding expensive trial-and-error approaches, based on extensive experimental campaigns, with beneficial effects on production time.


2013 ◽  
Vol 80 (2) ◽  
Author(s):  
Sven Klinkel ◽  
Sandro Zwecker ◽  
Ralf Müller

This paper is concerned with a solid shell finite element formulation to simulate the behavior of thin dielectric elastomer structures. Dielectric elastomers belong to the group of electroactive polymers. Due to efficient electromechanical coupling and the huge actuation strain, they are very interesting for actuator applications. The coupling effect in the material is mainly caused by polarization. In the present work, a simple constitutive relation, which is based on an elastic model involving one additional material constant to describe the polarization state, is incorporated in a solid shell formulation. It is based on a mixed variational principle of Hu-Washizu type. Thus, for quasi-stationary fields, the balance of linear momentum and Gauss' law are fulfilled in a weak sense. As independent fields, the displacements, electric potential, strains, electric field, mechanical stresses, and dielectric displacements are employed. The element has eight nodes with four nodal degrees of freedom, three mechanical displacements, and the electric potential. The surface oriented shell element models the bottom and the top surfaces of a thin structure. This allows for a simple modeling of layered structures by stacking the elements through the thickness. Some examples are presented to demonstrate the ability of the proposed formulation.


Sign in / Sign up

Export Citation Format

Share Document