Rational design of salmeterol xinafoate imprinted polymer through computational method: Functional monomer and crosslinker selection

Author(s):  
Shendi Suryana ◽  
Mutakin Mutakin ◽  
Yudi Rosandi ◽  
Aliya Nur Hasanah
2018 ◽  
Vol 16 (1) ◽  
pp. 12 ◽  
Author(s):  
Saeful Amin ◽  
Sophi Damayanti ◽  
Slamet Ibrahim

The research related to the interaction study, synthesis and characterization of molecular imprinted polymer using dimethylamylamine (DMAA) as the template molecule and the functional monomer methacrylate acid has been conducted. Molecular Imprinted Polymer (MIP) is a separation method made by the molecule template in the polymer matrix followed by removing the template molecule by washing for giving the permanent framework groove. The MIP was made by mixing the DMAA as the template molecule, with the methacrylate acid as the functional monomer, and the ethylene glycol dimethacrylate (EGDMA) as the crosslinker with the ratio 1:6:20. Porogen solvents used were the chloroform and the initiator azobisisobutyronitrile (AIBN). The crystal MIP and the NIP without the DMAA were characterized using Infrared Spectrophotometer (FTIR), and the result showed that there have been differences among the MIP, the NIP and the MIP after being extracted. The characterization using Scanning Electron Microscope (SEM) showed that the NIP as the comparison having flat morphology, while the MIP having irregular morphology and less pores. Then the MIP after being extracted has irregular, rough morphology and a lot of pores. The result reveals the interaction between the DMAA and the methacrylate acid that is the hydrogen bonded with the Gibbs free energy obtained is -5.434 j/mol. The imprinting factor of 2,353 is obtained. The highest desorption descending capacity is chloroform with the MIP 738% better. For the MIP and NIP methanol, it is found that the MIP is 123% better. Then the MIP which is desorbed by the chloroform is better 602% than the MIP resorbed by the methanol, and the ethyl acetate cannot desorb the DMAA.


2017 ◽  
Author(s):  
◽  
Silindile Senamile Zunngu

In this study, molecular modeling was used to investigate the intermolecular interactions between the functional monomer and ketoprofen which is an acidic pharmaceutical that possesses anti-inflammatory and analgesic activities. Ketoprofen is widely employed in medical care for treating musculoskeletal injury. This led to rational design of a molecularly imprinted polymer (MIP) that is selective to ketoprofen. Density functional theory (DFT) at B3LYP/6-31 level was used to investigate the intermolecular interaction between functional monomers and ketoprofen. Binding energy, ΔE, was used as an indication of the strength of the interaction that occurs between functional monomers and ketoprofen. 2-vinylpyridine (2-VP) as one of the functional monomers gave the lowest binding energy when compared to all the functional monomers investigated. Monomer-template interactions were further experimentally investigated using spectroscopic techniques such as Ultraviolet-visible and Fourier transform infrared (FTIR). A selective MIP for ketoprofen was synthesized using 2-vinylpyridine, ethylene glycol dimethacrylate, 1,1’-azobis(cyclohexanecarbonitrile), toluene/acetonitrile (9:1, v/v), and ketoprofen as a functional monomer, cross-linker, initiator, porogenic mixture, and template, respectively. The polymerization was performed at 60 °C for 16 h, and thereafter the temperature was increased to 80 °C for 24 h to achieve a solid monolith polymer. The non-imprinted polymer (NIP) was synthesized in a similar manner with the omission of ketoprofen. Characterization with thermogravimetric analysis (TGA) and powder X-ray diffraction (XRD) showed that the synthesized polymers were thermally stable and amorphous. Morphology of the particles were clearly visible, with MIP showing rough and irregular surface compared to NIP on the scanning electron microscopy (SEM). The characterization of the prominent functional groups on both MIP and NIP were performed using FTIR and nuclear magnetic resonance (NMR). The existence of hydroxyl was observed in the MIP; this was due to the presence of ketoprofen in the cavity. Prominent carbonyl group was an indication of the cross-linker present in both polymers. The synthesized MIP was applied as a selective sorbent in the solid-phase extraction of ketoprofen from the water. The extracted ketoprofen was monitored by high performance liquid chromatography (HPLC) coupled with UV/Vis detector. Several parameters were investigated for maximum recovery of ketoprofen from the spiked deionized water. The optimum method involved the conditioning of 14 mg MIP sorbent with 5 mL of methanol followed by equilibrating with 5 mL of deionized water adjusted to pH 2.5. Thereafter, 50 mL sample (pH 5) was loaded into the cartridge containing MIP sorbent followed by washing and eluting with 1% TEA/H2O and 100% methanol, respectively. Eluted compounds were quantified with HPLC. MIP was more selective to ketoprofen in the presence of other structural related competitors. The analytical method gave detection limits of 0.23, 0.17, and 0.09 mg L-1 in wastewater influent, effluent, and deionized water, respectively. The recovery for the wastewater influent and effluent spiked with 5 µg L-1 of ketoprofen was 68%, whereas 114% was obtained for deionized water. The concentrations of ketoprofen in the influent and effluent samples were in the ranges of 22.5 - 34.0 and 1.14 - 5.33 mg.L-1, respectively. The relative standard deviation (RSD) given as ± values indicates that the developed analytical method for the analysis of ketoprofen in wastewater was rapid, affordable, accurate, precise, sensitive, and selective.


Water SA ◽  
2018 ◽  
Vol 44 (3 July) ◽  
Author(s):  
Lawrence Mzukisi Madikizela ◽  
Silindile Senamile Zunngu ◽  
Nomchenge Yamkelani Mlunguza ◽  
Nikita Tawanda Tavengwa ◽  
Phumlane Selby Mdluli ◽  
...  

A molecularly imprinted polymer (MIP) that is selective to ketoprofen was synthesized and applied in the adsorption of the target compound from water. The MIP was synthesized using a bulk polymerization method at high temperatures (60–80°C), where ketoprofen, 2-vinylpyridine, ethylene glycol dimethacrylate, toluene and 1,1´-azobis(cyclohexanecarbonitrile) were used as template, functional monomer, cross-linker, porogen and initiator, respectively. Non-imprinted polymer (NIP) was synthesized similarly to the MIP but in the absence of ketoprofen. From molecular dynamics simulation, the nature of interactions that occurred between the template and the functional monomer were found to be based on hydrogen bonding. This was confirmed experimentally, where a high extraction efficiency of ≥ 90% was obtained at acidic conditions (pH 5) due to the protonation of ketoprofen. A contact time of 45 min was sufficient for the maximum adsorption of ketoprofen from 10 mL spiked water using 8 mg of the adsorbent. MIP showed greater selectivity than NIP by achieving a relative selectivity coefficient of 7.7 towards ketoprofen in the presence of structurally related pharmaceuticals. Furthermore, the order of sorption onto the MIPs from water was ketoprofen > fenoprofen > gemfibrozil. From a modelling perspective, the Langmuir adsorption isotherm and pseudo-second-order kinetic model gave the best fit, with maximum adsorption capacity of 8.24 mg·g−1 and sorption rate constant of 0.25 mg·g−1·min−1 for MIP. This was translated to chemisorption of ketoprofen onto the homogeneous MIP binding sites. This work demonstrated the great potential of MIP in selective recognition of ketoprofen from wastewater relative to closely related compounds.


RSC Advances ◽  
2019 ◽  
Vol 9 (41) ◽  
pp. 23474-23483 ◽  
Author(s):  
Chunsheng Xie ◽  
Shoulian Wei ◽  
Dan Chen ◽  
Wenying Lan ◽  
Zijun Yan ◽  
...  

In this work, a magnetic ion imprinted polymer (MIIP) with specific recognition capability toward cadmium was prepared by a sol–gel method using waste beer yeast, which is a macromolecule biomass, as a functional monomer.


2020 ◽  
Vol 12 (47) ◽  
pp. 5729-5736
Author(s):  
Simone Cavalera ◽  
Fabio Di Nardo ◽  
Giulia Spano ◽  
Laura Anfossi ◽  
Panagiotis Manesiotis ◽  
...  

A selective molecularly imprinted polymer prepared with a squaramide-based functional monomer was used for the solid phase extraction of roxarsone from surface waters.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Yujie Huang ◽  
Qiujin Zhu

This paper theoretically investigates interactions between a template and functional monomer required for synthesizing an efficient molecularly imprinted polymer (MIP). We employed density functional theory (DFT) to compute geometry, single-point energy, and binding energy (ΔE) of an MIP system, where spermidine (SPD) and methacrylic acid (MAA) were selected as template and functional monomer, respectively. The geometry was calculated by using B3LYP method with 6-31+(d) basis set. Furthermore, 6-311++(d, p) basis set was used to compute the single-point energy of the above geometry. The optimized geometries at different template to functional monomer molar ratios, mode of bonding between template and functional monomer, changes in charge on natural bond orbital (NBO), and binding energy were analyzed. The simulation results show that SPD and MAA form a stable complex via hydrogen bonding. At 1 : 5 SPD to MAA ratio, the binding energy is minimum, while the amount of transferred charge between the molecules is maximum; SPD and MAA form a stable complex at 1 : 5 molar ratio through six hydrogen bonds. Optimizing structure of template-functional monomer complex, through computational modeling prior synthesis, significantly contributes towards choosing a suitable pair of template-functional monomer that yields an efficient MIP with high specificity and selectivity.


RSC Advances ◽  
2015 ◽  
Vol 5 (115) ◽  
pp. 94997-95006 ◽  
Author(s):  
Shaomei Zeng ◽  
Yongxin She ◽  
Bining Jiao ◽  
Guangyang Liu ◽  
Jing Wang ◽  
...  

A class-specific molecularly imprinted polymer (MIP) for selectively extracting four tropane alkaloids has been prepared using anisodine, methacrylic, and trimethylolpropane trimethacrylate as template, functional monomer and crosslinker, respectively.


2014 ◽  
Vol 2 (42) ◽  
pp. 17952-17961 ◽  
Author(s):  
Zhongqi Ren ◽  
Delong Kong ◽  
Keyuan Wang ◽  
Weidong Zhang

To achieve a fast adsorption rate and a high adsorption capacity in the selective adsorption of Cr(vi) from wastewater, a novel Cr(vi) ion imprinted polymer (Cr(vi)-IIP) was synthesized by bulk polymerization with 4-vinyl pyridine (4-VP) as a functional monomer.


2012 ◽  
Vol 512-515 ◽  
pp. 2333-2338
Author(s):  
Yong Feng Kang ◽  
Yan Li ◽  
Wu Ping Duan ◽  
Jing Xie ◽  
Jun Xia Kang

Cu2+-imprinted polymers (Cu(II)–IIPs) were prepared by thermal precipitation polymerization method with Cu2+ion as the template, 1,4-dihydroxyanthraquinone (AQ) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as a cross-linker. In synthesis processes,The functional monomer AQ, there is only one functional groups that can selectively recognize Cu2+ ion, is set in highly cross-linked polymer net, not to form covalent-linkage with polymer net. The imprinted polymer particles were characterized by UV-visible spectra, FT-IR, scanning electron microscopy and colorimetry. The sorption and selectivity capacity of Cu(II)–IIPs for Cu2+ ion were studied.The results showed that the imprinted polymer had good affinity for Cu2+. The maximum sorption capacity was 11.4 mg/g.The sorption equilibrium time was 50 min and the optimum pH for quantitative copper retention was 7.0. Competitive sorption of Cu2+, Co2+, Zn2+, Mg2+, Ca2+ from their mixture was also studied in a batch system. The relatively selective factor of copper to other metal ions were greater than 1. The Cu(II)–IIPs could be repeatedly used with high selectivity and stability for Cu2+.This Cu(II)–IIPs has been successfully applied to the separation and determination of the trace Cu2+ in real water samples.


Sign in / Sign up

Export Citation Format

Share Document