Hydrophobic modification of ZnO nanostructures surface using silane coupling agent

2013 ◽  
Vol 35 (6) ◽  
pp. 1204-1211 ◽  
Author(s):  
Yong Zhang ◽  
Fang Fang ◽  
Cheng Wang ◽  
Lidan Wang ◽  
Xujie Wang ◽  
...  
2013 ◽  
Vol 634-638 ◽  
pp. 3048-3051
Author(s):  
Zhong Yuan Wu ◽  
Liang Hu ◽  
Jia Xi Chen

Surface hydrophobic modification of T-ZnOw was experimented with silane coupling agent KH-570(gamma-(methylpropyl acyloxy)trimethoxysilane). It was shown by FT-IR that the whiskers was modified by silane coupling agents molecular compounded with the Zn-OH of whiskers. The effect of grafted modification with KH570 on hydrophobicity of T-ZnOw was characterized with dispersion stability test in an organic solvent and measuring the contact angle between the whiskers on distilled water. The results showed that surface treatment of T-ZnOw with KH570 improves hydrophobicity of whiskers simultaneously, and the modified whiskers have much slower settling rates than the pristine whiskers in the liquid paraffin. The contact angle between the modified whiskers with distilled water is 137.75 degrees, which is a significant increase.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2254
Author(s):  
Adeleke A. Oyekanmi ◽  
N. I. Saharudin ◽  
Che Mohamad Hazwan ◽  
Abdul Khalil H. P. S. ◽  
Niyi G. Olaiya ◽  
...  

Hydrophilic behaviour of carrageenan macroalgae biopolymer, due to hydroxyl groups, has limited its applications, especially for packaging. In this study, macroalgae were reinforced with cellulose nanofibrils (CNFs) isolated from kenaf bast fibres. The macroalgae CNF film was after that treated with silane for hydrophobicity enhancement. The wettability and functional properties of unmodified macroalgae CNF films were compared with silane-modified macroalgae CNF films. Characterisation of the unmodified and modified biopolymers films was investigated. The atomic force microscope (AFM), SEM morphology, tensile properties, water contact angle, and thermal behaviour of the biofilms showed that the incorporation of Kenaf bast CNF remarkably increased the strength, moisture resistance, and thermal stability of the macroalgae biopolymer films. Moreover, the films’ modification using a silane coupling agent further enhanced the strength and thermal stability of the films apart from improved water-resistance of the biopolymer films compared to unmodified films. The morphology and AFM showed good interfacial interaction of the components of the biopolymer films. The modified biopolymer films exhibited significantly improved hydrophobic properties compared to the unmodified films due to the enhanced dispersion resulting from the silane treatment. The improved biopolymer films can potentially be utilised as packaging materials.


2005 ◽  
Vol 04 (01) ◽  
pp. 117-126
Author(s):  
N. L. MA ◽  
P. WU

Using density functional theory, we predicted the solution structure of the hydrolyzed 3–aminopropyltriethoxysilane (h–APS), which is a silane coupling agent commonly used in many industrial applications. We have located five stable minima on the potential energy surface of h–APS in which four of them are "neutral", and the remaining one is zwitterionic (dipolar) in nature. Our calculations suggested that the stability of the most stable form of h–APS in water (denoted as II_N) arose from strong intramolecular OH ⋯ N hydrogen bond. The least stable form is the zwitterionic form (I_ZW), which is estimated to be over 90 kJ mol -1 less stable than II_N. The factors governing the relative stabilities of different forms are discussed.


Sign in / Sign up

Export Citation Format

Share Document