Preparation, characterization, and oxygen scavenging capacity of biodegradable α-tocopherol/PLA microparticles for active food packaging applications

2015 ◽  
Vol 38 (5) ◽  
pp. 981-986 ◽  
Author(s):  
Paola Scarfato ◽  
Elvira Avallone ◽  
Maria Rosaria Galdi ◽  
Luciano Di Maio ◽  
Loredana Incarnato
Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 262 ◽  
Author(s):  
Adriane Cherpinski ◽  
Piotr Szewczyk ◽  
Adam Gruszczyński ◽  
Urszula Stachewicz ◽  
Jose Lagaron

The main goal of this study was to obtain, for the first time, highly efficient water barrier and oxygen-scavenging multilayered electrospun biopaper coatings of biodegradable polymers over conventional cellulose paper, using the electrospinning coating technique. In order to do so, poly(3-hydroxybutyrate) (PHB) and polycaprolactone (PCL) polymer-containing palladium nanoparticles (PdNPs) were electrospun over paper, and the morphology, thermal properties, water vapor barrier, and oxygen absorption properties of nanocomposites and multilayers were investigated. In order to reduce the porosity, and to enhance the barrier properties and interlayer adhesion, the biopapers were annealed after electrospinning. A previous study showed that electrospun PHB-containing PdNP did show significant oxygen scavenging capacity, but this was strongly reduced after annealing, a process that is necessary to form a continuous film with the water barrier. The results in the current work indicate that the PdNP were better dispersed and distributed in the PCL matrix, as suggested by focus ion beam-scanning electron microscopy (FIB-SEM) experiments, and that the Pd enhanced, to some extent, the onset of PCL degradation. More importantly, the PCL/PdNP nanobiopaper exhibited much higher oxygen scavenging capacity than the homologous PHB/PdNP, due to most likely, the higher oxygen permeability of the PCL polymer and the somewhat higher dispersion of the Pd. The passive and active multilayered biopapers developed here may be of significant relevance to put forward the next generation of fully biodegradable barrier papers of interest in, for instance, food packaging.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Razieh Niazmand ◽  
Bibi Marzieh Razavizadeh ◽  
Farzaneh Sabbagh

The physical, thermal, mechanical, optical, microstructural, and barrier properties of low-density polyethylene films (LDPE) containing ferula asafoetida leaf and gum extracts were investigated. Results showed a reduction in elasticity and tensile strength with increasing extract concentration in the polymer matrix. The melting temperature and enthalpy increased with increasing concentration of extracts. The films containing extracts had lower L∗ and a∗ and higher b∗ indices. The films containing leaf extract had more barrier potential to UV than the gum extracts. The oxygen permeability in films containing 5% of leaf and gum extracts increased by 2.3 and 2.1 times, respectively. The morphology of the active films was similar to bubble swollen islands, which was more pronounced at higher concentrations of gum and leaf extracts. FTIR results confirmed some chemical interactions of ferula extracts with the polymer matrix. At the end of day 14th, the growth rate of Aspergillus niger and Saccharomyces cerevisea in the presence of the PE-Gum-5 reduced more than PE-Leaf-5 (3.7 and 2.4 logarithmic cycles, respectively) compared to the first day. Our findings showed that active LDPE films have desire thermo-mechanical and barrier properties for food packaging.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 200
Author(s):  
Celeste Cottet ◽  
Andrés G. Salvay ◽  
Mercedes A. Peltzer ◽  
Marta Fernández-García

Poly(itaconic acid) (PIA) was synthesized via conventional radical polymerization. Then, functionalization of PIA was carried out by an esterification reaction with the heterocyclic groups of 1,3-thiazole and posterior quaternization by N-alkylation reaction with iodomethane. The modifications were confirmed by Fourier transform infrared (FTIR) and proton nuclear magnetic resonance (1H-NMR), as well as ζ-potential measurements. Their antimicrobial activity was tested against different Gram-negative and Gram-positive bacteria. After characterization, the resulting polymers were incorporated into gelatin with oxidized starch and glycerol as film adjuvants, and dopamine as crosslinking agent, to develop antimicrobial-active films. The addition of quaternized polymers not only improved the mechanical properties of gelatin formulations, but also decreased the solution absorption capacity during the swelling process. However, the incorporation of synthesized polymers increased the deformation at break values and the water vapor permeability of films. The antioxidant capacity of films was confirmed by radical scavenging ability and, additionally, those films exhibited antimicrobial activity. Therefore, these films can be considered as good candidates for active packaging, ensuring a constant concentration of the active compound on the surface of the food, increasing products’ shelf-life and reducing the environmental impact generated by plastics of petrochemical origin.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 228
Author(s):  
Swarup Roy ◽  
Lindong Zhai ◽  
Hyun Chan Kim ◽  
Duc Hoa Pham ◽  
Hussein Alrobei ◽  
...  

A chitosan-based nanocomposite film with tannic acid (TA) as a cross-linker and titanium dioxide nanoparticles (TiO2) as a reinforcing agent was developed with a solution casting technique. TA and TiO2 are biocompatible with chitosan, and this paper studied the synergistic effect of the cross-linker and the reinforcing agent. The addition of TA enhanced the ultraviolet blocking and mechanical properties of the chitosan-based nanocomposite film. The reinforcement of TiO2 in chitosan/TA further improved the nanocomposite film’s mechanical properties compared to the neat chitosan or chitosan/TA film. The thermal stability of the chitosan-based nanocomposite film was slightly enhanced, whereas the swelling ratio decreased. Interestingly, its water vapor barrier property was also significantly increased. The developed chitosan-based nanocomposite film showed potent antioxidant activity, and it is promising for active food packaging.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 940
Author(s):  
Michael G. Kontominas ◽  
Anastasia V. Badeka ◽  
Ioanna S. Kosma ◽  
Cosmas I. Nathanailides

Seafood products are highly perishable, owing to their high water activity, close to neutral pH, and high content of unsaturated lipids and non-protein nitrogenous compounds. Thus, such products require immediate processing and/or packaging to retain their safety and quality. At the same time, consumers prefer fresh, minimally processed seafood products that maintain their initial quality properties. The present article aims to review the literature over the past decade on: (i) innovative, individual packaging technologies applied to extend the shelf life of fish and fishery products, (ii) the most common combinations of the above technologies applied as multiple hurdles to maximize the shelf life of seafood products, and (iii) the respective food packaging legislation. Packaging technologies covered include: Modified atmosphere packaging; vacuum packaging; vacuum skin packaging; active food packaging, including oxygen scavengers; carbon dioxide emitters; moisture regulators; antioxidant and antimicrobial packaging; intelligent packaging, including freshness indicators; time–temperature indicators and leakage indicators; retort pouch processing and edible films; coatings/biodegradable packaging, used individually or in combination for maximum preservation potential.


2021 ◽  
Vol 117 ◽  
pp. 106709
Author(s):  
Cristina Cejudo Bastante ◽  
Nuno H.C.S. Silva ◽  
Lourdes Casas Cardoso ◽  
Casimiro Mantell Serrano ◽  
Enrique J. Martínez de la Ossa ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1263
Author(s):  
Cornelia Vasile ◽  
Mihaela Baican

Food packaging is designed to protect foods, to provide required information about the food, and to make food handling convenient for distribution to consumers. Packaging has a crucial role in the process of food quality, safety, and shelf-life extension. Possible interactions between food and packaging are important in what is concerning food quality and safety. This review tries to offer a picture of the most important types of active packaging emphasizing the controlled/target release antimicrobial and/or antioxidant packaging including system design, different methods of polymer matrix modification, and processing. The testing methods for the appreciation of the performance of active food packaging, as well as mechanisms and kinetics implied in active compounds release, are summarized. During the last years, many fast advancements in packaging technology appeared, including intelligent or smart packaging (IOSP), (i.e., time–temperature indicators (TTIs), gas indicators, radiofrequency identification (RFID), and others). Legislation is also discussed.


Sign in / Sign up

Export Citation Format

Share Document