scholarly journals Early impairment of skeletal muscle endothelial glycocalyx barrier properties in diet-induced obesity in mice

2014 ◽  
Vol 2 (1) ◽  
pp. e00194 ◽  
Author(s):  
Bart J. M. Eskens ◽  
Thomas M. Leurgans ◽  
Hans Vink ◽  
Jurgen W. G. E. VanTeeffelen
2012 ◽  
Vol 112 (7) ◽  
pp. 1223-1232 ◽  
Author(s):  
Tatsuya Kusudo ◽  
Zhonghua Wang ◽  
Atsuko Mizuno ◽  
Makoto Suzuki ◽  
Hitoshi Yamashita

Transient receptor potential channel V4 (TRPV4) functions as a nonselective cation channel in various cells and plays physiological roles in osmotic and thermal sensation. However, the function of TRPV4 in energy metabolism is unknown. Here, we report that TRPV4 deficiency results in increased muscle oxidative capacity and resistance to diet-induced obesity in mice. Although no difference in body weight was observed between wild-type and Trpv4−/− mice when fed a standard chow diet, obesity phenotypes induced by a high-fat diet were significantly improved in Trpv4−/− mice, without any change in food intake. Quantitative analysis of mRNA revealed the constitutive upregulation of many genes, including those for transcription factors such as peroxisome proliferator-activated receptor α and for metabolic enzymes such as phosphoenolpyruvate carboxykinase. These upregulated genes were especially prominent in oxidative skeletal muscle, in which the activity of Ca2+-dependent phosphatase calcineurin was elevated, suggesting that other Ca2+ channels function in the skeletal muscle of Trpv4−/− mice. Indeed, gene expressions for TRPC3 and TRPC6 increased in the muscles of Trpv4−/− mice compared with those of wild-type mice. The number of oxidative type I fiber also increased in the mutant muscles following myogenin gene induction. These results strongly suggested that inactivation of Trpv4 induces compensatory increases in TRPC3 and TRPC6 production, and elevation of calcineurin activity, affecting energy metabolism through increased expression of genes involved in fuel oxidation in skeletal muscle and thereby contributing to increased energy expenditure and protection from diet-induced obesity in mice.


2020 ◽  
Vol 6 (49) ◽  
pp. eabc6250
Author(s):  
Andréa Livia Rocha ◽  
Tanes Imamura de Lima ◽  
Gerson Profeta de Souza ◽  
Renan Oliveira Corrêa ◽  
Danilo Lopes Ferrucci ◽  
...  

MicroRNAs (miRNAs) have been implicated in oxidative metabolism and brown/beige adipocyte identity. Here, we tested whether widespread changes in miRNA expression promoted by treatment with the small-molecule enoxacin cause browning and prevent obesity. Enoxacin mitigated diet-induced obesity in mice, and this was associated with increased energy expenditure. Consistently, subcutaneous white and brown adipose tissues and skeletal muscle of enoxacin-treated mice had higher levels of markers associated with thermogenesis and oxidative metabolism. These effects were cell autonomous since they were recapitulated in vitro in murine and human cell models. In preadipocytes, enoxacin led to a reduction of miR-34a-5p expression and up-regulation of its target genes (e.g., Fgfr1, Klb, and Sirt1), thus increasing FGF21 signaling and promoting beige adipogenesis. Our data demonstrate that enoxacin counteracts obesity by promoting thermogenic signaling and inducing oxidative metabolism in adipose tissue and skeletal muscle in a mechanism that involves, at least in part, miRNA-mediated regulation.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 276-LB ◽  
Author(s):  
RENATA PEREIRA ◽  
ANGELA C. OLVERA ◽  
ALEX A. MARTI ◽  
RANA HEWEZI ◽  
WILLIAM A. BUI TRAN ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Enrique Calvo ◽  
Noelia Keiran ◽  
Catalina Núñez-Roa ◽  
Elsa Maymó-Masip ◽  
Miriam Ejarque ◽  
...  

AbstractAdipose-derived mesenchymal stem cells (ASCs) are a promising option for the treatment of obesity and its metabolic co-morbidities. Despite the recent identification of brown adipose tissue (BAT) as a potential target in the management of obesity, the use of ASCs isolated from BAT as a therapy for patients with obesity has not yet been explored. Metabolic activation of BAT has been shown to have not only thermogenic effects, but it also triggers the secretion of factors that confer protection against obesity. Herein, we isolated and characterized ASCs from the visceral adipose tissue surrounding a pheochromocytoma (IB-hASCs), a model of inducible BAT in humans. We then compared the anti-obesity properties of IB-hASCs and human ASCs isolated from visceral white adipose tissue (W-hASCs) in a murine model of diet-induced obesity. We found that both ASC therapies mitigated the metabolic abnormalities of obesity to a similar extent, including reducing weight gain and improving glucose tolerance. However, infusion of IB-hASCs was superior to W-hASCs in suppressing lipogenic and inflammatory markers, as well as preserving insulin secretion. Our findings provide evidence for the metabolic benefits of visceral ASC infusion and support further studies on IB-hASCs as a therapeutic option for obesity-related comorbidities.


Sign in / Sign up

Export Citation Format

Share Document