Synthesis, characterization, mechanical properties and biocompatibility of interpenetrating polymer network–super-porous hydrogel containing sodium alginate

2007 ◽  
Vol 56 (12) ◽  
pp. 1563-1571 ◽  
Author(s):  
Lichen Yin ◽  
Likun Fei ◽  
Cui Tang ◽  
Chunhua Yin
2021 ◽  
Author(s):  
Yufeng Lei ◽  
Anqiang Zhang ◽  
Yaling Lin

Blending polymers has always been a critical strategy toward high-performance materials. By creating interpenetrating polymer network (IPN), the incompatibility of different polymers could be overcome and a favorable bi-continuous phase...


2015 ◽  
Vol 55 (11) ◽  
pp. 2511-2518 ◽  
Author(s):  
Marija Lučić Škorić ◽  
Nedeljko Milosavljević ◽  
Maja Radetić ◽  
Zoran Šaponjić ◽  
Marija Radoičić ◽  
...  

Soft Matter ◽  
2018 ◽  
Vol 14 (1) ◽  
pp. 151-160 ◽  
Author(s):  
Yifei Xu ◽  
Onkar Ghag ◽  
Morgan Reimann ◽  
Philip Sitterle ◽  
Prithwish Chatterjee ◽  
...  

An interpenetrating polymer network, chlorophyllin-incorporated “smart” hydrogel was synthesized and exhibited enhanced mechanical properties, upper critical solution temperature swelling, and promising visible-light responsiveness.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Eltjani-Eltahir Hago ◽  
Xinsong Li

In this work, a new approach was introduced to prepare interpenetrating polymer network PVA/GE hydrogels by cross-linking of various concentration gelatin in the presence of transglutaminase enzyme by using the freezing-thawing cycles technique. The effects of freezing-thawing cycles on the properties of morphological characterization, gel fraction, swelling, mechanical, and MTT assay were investigated. The IPN PVA/GE hydrogels showed excellent physical and mechanical Properties. MTT assay data and the fibroblasts culture also showed excellent biocompatibility and good proliferation. This indicates that the IPN hydrogels are stable enough for various biomedical applications.


Gels ◽  
2019 ◽  
Vol 5 (3) ◽  
pp. 36 ◽  
Author(s):  
Panayiota A. Panteli ◽  
Costas S. Patrickios

This review summarizes work done on triply, or higher, interpenetrating polymer network materials prepared in order to widen the properties of double polymer network hydrogels (DN), doubly interpenetrating polymer networks with enhanced mechanical properties. The review will show that introduction of a third, or fourth, polymeric component in the DNs would further enhance the mechanical properties of the resulting materials, but may also introduce other useful functionalities, including electrical conductivity, low-friction coefficients, and (bio)degradability.


Sign in / Sign up

Export Citation Format

Share Document